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ABSTRACT

Extracting the maximum possible information from the
available measurements is a challenging task but is required
when sensing seismic signals in inaccessible locations.
Compressive sensing (CS) is a framework that allows recon-
struction of sparse signals from fewer measurements than
conventional sampling rates. In seismic CS, the use of sparse
transforms has some success; however, defining fixed basis
functions is not trivial given the plethora of possibilities. Fur-
thermore, the assumption that every instance of a seismic signal
is sparse in any acquisition domain under the same transforma-
tion is limiting. We use beta process factor analysis (BPFA) to
learn sparse transforms for seismic signals in the time slice and
shot record domains from available data, and we use them as
dictionaries for CS and denoising. Algorithms that use prede-
fined basis functions are compared against BPFA, with BPFA
obtaining state-of-the-art reconstructions, illustrating the im-
portance of decomposing seismic signals into learned features.

INTRODUCTION

Seismic surveying is an indispensable tool for the geophysics
community. It is the process by which we are able to visualize the
interior structure of our planet and guide our understanding of its
physical properties. An artificial source of body waves is used at the
surface, which creates reflections from deep impedance changes
at rock layer boundaries, which are recorded by grids of receivers.
In land and marine seismic surveys, we frequently have traces or
groups of traces missing either because receivers malfunctioned,
they could not be placed in some locations, or because it was impos-
sible to collect all the planned shots. It could also be the fact that
some local source of noise renders a receiver’s output as unusable.
There are many reasons why patches of missing data could occur

with a great interest in their reconstruction using temporal, spectral,
or spatial information (Shen et al., 2015).
Compressive sensing (CS) is a framework that reconstructs the

signal of interest using spatial information and allows perfect
reconstruction of a particular class of signals using a lower sampling
rate than the Nyquist rate (Nyquist, 2002). These signals are either
sparse in the acquisition domain, or they are sparse in other domains
defined by dictionaries of basis functions. Seismic interpolation is
treated as an inverse problem where seismic events are assumed to
be sparse in some transform such as the Fourier (Sacchi et al.,
1998), the Radon (Trad et al., 2002), the curvelet (Herrmann and
Hennenfent, 2008), or the focal transform (Kutscha and Verschuur,
2016). These basis functions are used in conjunction with a sparse
solver to obtain a solution given the data.
Projection onto convex sets (POCS) (Abma and Kabir, 2006)

transforms the available data to the Fourier domain and uses hard
or soft thresholding (Stanton et al., 2015). Iteratively reweighted
least-squares were also proposed (Zwartjes and Sacchi, 2007) to sup-
press the artifacts in the Fourier domain. The iterative soft threshold-
ing (IST) and the curvelet transform were used successfully for
seismic interpolation (Herrmann and Hennenfent, 2008). A faster
version of IST was proposed (Beck and Teboulle, 2009), namely,
the fast iterative soft thresholding algorithm (FISTA) and then applied
to seismic data (Pérez et al., 2013). The relevance vector machine
(RVM) has also shown some success (Pilikos and Faul, 2016) using
the discrete cosine transform (DCT) in the time slice domain, with the
additional benefit of providing a probabilistic interpretation of the
estimated values with its uncertainty measure. Spectral projected
gradient for L1 (SPGL1) (van den Berg and Friedlander, 2009)
was proposed to solve the l1-norm minimization problem. A faster
gradient projection method based on the curvelet transform was pro-
posed (Cao et al., 2015) with comparative reconstruction accuracy
but faster computational time. Tensor completion (Kreimer and Sac-
chi, 2011) algorithms were also proposed to solve this issue and to
scale to larger dimensions. In a recent comparison of 5D solvers,
POCS was found to preserve the amplitudes better (Stanton et al.,
2012).
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All the above algorithms use dictionaries of predefined basis
functions for sparse representation. This limits the reconstruction
to the assumption that every seismic signal, with any structure at
any instance of operation, is sparse in the same transform as every
other instance of that signal. This assumption does not allow for large
signal variations, and potential loss of reconstruction could occur. An
alternative to the predefined dictionaries would be to learn the basis
functions from the seismic measurements. This approach is used by
Zhu et al. (2015) for the purpose of denoising seismic data with great
success. The main algorithm is a modification of K-singular-value
decomposition (K-SVD) (Elad and Aharon, 2006) which alternates
between the coefficients and the dictionary, optimizing for the given
data. Furthermore, simultaneous denoising and feature learning of
seismic signals is performed by Beckouche and Ma (2014), and fur-
ther dictionary learning for denoising is undertaken by Turquais
et al. (2015).
In this paper, we apply beta process factor analysis (BPFA) (Zhou

et al., 2012) to seismic signals for the purpose of denoising and for
CS. We use BPFA to learn sparse representations of seismic signals
in the shot record and time slice domains. We perform various ex-
periments in both domains and comparisons with POCS, SPGL1,
and K-SVD are undertaken.
The structure of the paper is as follows: First, the CS theory is

introduced with connections to feature learning. Then, BPFA is de-
scribed — its theoretical and practical aspects. A typical seismic
survey setup is provided next along with how efficient data acquis-
ition applies to different domains. CS results are then presented in
the time slice and shot record domains with example reconstruc-
tions. Accompanying the results, basis functions learned from the
data are presented. Afterward, denoising results are shown along with
typical illustrations of noisy and cleaned signals in both domains.
Computational times are also recorded for each algorithm for CS
and denoising.

CS AND FEATURE LEARNING

CS allows perfect reconstruction of sparse signals from fewer mea-
surements than the number determined by the Nyquist rate. In math-
ematical terms, let w ∈ RN be the sparse signal and x ∈ RN be the
original signal defined by

x ¼ Dw; (1)

where D ∈ RN×N maps the sparse domain to the acquisition domain
and its lth column is the lth basis element, dl ∈ RN , evaluated at all
N possible measuring points. CS aims to reconstruct this signal using
M measurements with M ≪ N. These measurements are described
by y ¼ ΩDw, where y ∈ RM is known as the collapsed signal and
Ω ∈ RM×N is the sensing matrix. Matrices with random numbers are
often used for Ω that correspond to the linear combination of the
measurements with random coefficients. Nevertheless, such a choice
limits the location of the sampling points and is restrictive for the real
world. Therefore,Ω is set as the zero matrix, apart from one nonzero
entry equal to 1 per row. Φ ¼ ΩD is used for simplicity, and there-
fore

y ¼ Φw; (2)

where Φ ∈ RM×N . The lth column of Φ is the lth basis element
evaluated at only M points, denoted by ϕl ∈ RM. Variations to the

formulation of equation 2 exist, such as POCS, which inserts zeros at
the location of missing data points and operates in RN , but for the
moment, the discussion is continued with Ω as defined above.
One approach to solve this under-determined system is to set a

sparsity constraint, by minimizing the l0 norm of w, kwk0. How-
ever, this problem cannot be solved in polynomial time in general
(Natarajan, 1995). The breakthrough in CS was made by a series of
papers (Candes and Tao, 2006; Donoho, 2006) that enabled linear
programming methods to find an approximate solution to the min-
imization of the l0 norm by minimizing the l1 norm using the fol-
lowing formulation:

ŵ ¼ min
w

kwk1 subject to Φw ¼ y: (3)

Feature learning

The choice of appropriate dictionary of basis functions D is fun-
damental for the solution (Bengio et al., 2013). Researchers have
been using their domain expertise to design suitable basis functions
for their specific application and careful engineering is necessary to
identify those that model the data well. Feature learning is a set of
techniques that allow machines to learn features/basis functions
from raw data with the algorithm deciding which are suitable. In the
context of CS, the task is to find a sparse representation for the train-
ing data. These can be basis functions at one common scale, or at
multiple scales acquired through deep learning using many layers.
In this paper, we will focus on learning basis functions at only
one scale.
There are different routes to the solution: direct or indirect ones.

Indirectly solving this problem involves methods that use available
training data offline, learn D, and then use the learned dictionary of
basis functions for a desired task. Such models are the denoising
autoencoders (Vincent et al., 2008), contractive autoencoders (Rifai
et al., 2011), and restricted Boltzmann machines (Hinton, 2002) to
name a few. On the other hand, a direct way learns the basis func-
tions online, at the same time as interpolating/denoising the data,
using only the available measurements.
To achieve this, the signal x ¼ Dw ∈ RN is divided into T sub-

sets xðiÞ, i ¼ 1; : : : ; T of size K ¼ N∕T. For example, if we want to
learn basis functions for a 2D signal of size 128 × 128, that is,
N ¼ 16; 384, we can split the signal into T ¼ 256 patches of size
8 × 8, that is, N∕T ¼ 64. Patches are usually extracted with over-
laps to increase the number of training subsets. It is assumed that
each training subset arises from a vector of coefficients, wðiÞ in the
sparse domain under the same transform, D ∈ RK×K with additive
noise ϵðiÞ. In other words,

xðiÞ ¼ DwðiÞ þ ϵðiÞ: (4)

Let X ∈ RK×T be the matrix with columns xðiÞ, i ¼ 1; : : : ; T and let
W ∈ RK×T be the matrix with columns wðiÞ, i ¼ 1; : : : ; T. The goal
is to infer simultaneously D and fwðiÞgTi¼1 from the signal subsets
fxðiÞgTi¼1 via the optimization problem

min
D;W

kX−DWk22 subject to kwðiÞk0 ≤ T0; for i¼ 1; : : : ;T;

(5)

where T0 ≪ K is the sparsity (number of nonzero elements) of the
signal. This is done in K-SVD, which alternates between D and W
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and uses a pursuit algorithm to compute the coefficients wðiÞ for
each training subset xðiÞ.
Note that in equation 5, no sensing matrixΩ is used, which would

possibly be different for each subset. Instead of using yðiÞ ¼ ΩðiÞxðiÞ,
the components of xðiÞ where data are missing are set to zero (Aharon
et al., 2006). In the case of noisy signals, the original values with
noise are used (Elad and Aharon, 2006). An operator is used to alter
the objective function of the optimization problem to indicate the lo-
cations of available data. Inserting zeros in the place of missing data
points is also done in POCS, which helps to preserve the location and
structure inside each xðiÞ. However, SPGL1, which will also be used
in the experiments, uses a sensing matrix Ω and collapses the data
as in equation 2 which is the traditional formulation (Candes and
Wakin, 2008).
Learning the basis functions at the same time as performing denois-

ing and/or interpolation uses training data that are corrupted. One
might expect that the learned dictionary is only useful for sparsely
representing the corrupted signals. However, this is not the case as
examined in various models for feature learning (Vincent et al.,
2008; Srivastava et al., 2014) and in seismic applications (Beckouche
and Ma, 2014) where denoising and feature learning were performed
simultaneously. In fact, adding noise or dropping out measurements
from the training data is recommended as a regularization to avoid
over-fitting (Bengio et al., 2013). Furthermore, many training subsets
mitigate the risk of learning corruption.

BETA PROCESS FACTOR ANALYSIS

Most of the methods in the seismic literature use predefined basis
functionsDwith a fixed size that is very limiting. BPFA (Zhou et al.,
2012) is a method that overcomes these limitations. In the real
world, there are infinitely many possibilities for D. In fact, D itself
could be infinite withD ∈ RK×L where L → ∞. We assume the data
matrix X is generated by an underlying process with its columns
xðiÞ, i ¼ 1; : : : ; T generated by the graphical model in Figure 1.
To introduce this, we explicitly separate the value of a coefficient
in wðiÞ from the fact whether it is nonzero or zero. This means that if
the coefficient is nonzero, the corresponding basis function is used
when generating xðiÞ. In particular, we introduce probabilistic var-
iables zðiÞ and sðiÞ such that

wðiÞ ¼ zðiÞ⊙sðiÞ; (6)

where ⊙ represents the elementwise vector product, zðiÞ ∈ RL sig-
nifies whether a basis function is used, and sðiÞ ∈ RL are the values
of the coefficients. We assume that zðiÞ are generated by a Bernoulli
process parametrized by a beta process,

zðiÞ ∼
YL

l¼1

BernoulliðπlÞ; (7)

where πl is the probability that the lth basis function is used when
xðiÞ is generated. The probabilities π ¼ ðπ1; : : : ; πLÞ themselves are
generated by a beta process

π ∼
YL

l¼1

Betaða∕L; bðL − 1Þ∕LÞ; (8)

where a; b are parameters characterizing the process. The variable
sðiÞ on the other hand is a priori normally distributed with zero mean

and variance γ−1s IL, where γs is modeled by a hyper prior with
gamma distribution, gammaðc; dÞ, with c; d characterizing it and IL
is the L × L identity matrix. To summarize,

xðiÞ ¼ DwðiÞ þ ϵðiÞ; (9)

where the columns fdlgLl¼1 of D are modeled by

dl ∼N ð0; K−1IKÞ (10)

and the noise is modeled by

ϵðiÞ ∼N ð0; γ−1ϵ IKÞ; (11)

where IK is the K × K identity matrix and γϵ is modeled by a
gamma distribution, gammaðe; fÞ. There are many parameters that
govern the model with a summary given in Figure 1, and a discus-
sion on their settings is given later on.
The algorithm then estimates posterior conditional probabilities

for zðiÞ by adjusting the Bernoulli distributed fπlgLl¼1. In addition, it
estimates similar posterior probabilities for sðiÞ and fdðiÞl gLl¼1 by ad-
justing the mean and variance of their respective Gaussian distribu-
tions. For sðiÞ and ϵðiÞ, their respective precisions γs and γϵ need to
be updated. The strategy for the reestimations maximizes the like-
lihood that this choice of variables generates fxðiÞgTi¼1. After a pre-
defined number of iterations, the final values of the variables are set
from their respective posterior distributions.
This process formulation is known more generally as Bayesian

nonparametrics. These approaches use prior distributions within the
Bayesian framework that could represent objects on an array of in-
finite size, in the particular case of feature learning, an infinite array
of features (Griffiths and Ghahramani, 2011). Bayes’ rule uses a
prior distribution (before observing any data) and a likelihood to
estimate the posterior distribution (after observing any data) of

Figure 1. Graphical model for the BPFA. The circles represent the
random variables of the model that are described by probability dis-
tributions. The others are the parameters that govern each probability
distribution.
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the model’s variables. For example, equations 10 and 11 are prior
distributions that reflect assumptions about their variables. The like-
lihood model is the probability of producing the observations (data
samples) given the current configuration of the variables (i.e., equa-
tion 9) and ideally should be maximized. The posterior distribution
of a variable is the distribution after using the data samples for the
maximization of the likelihood. It is proportional to the product of
the prior and the likelihood distributions.

Practical importance of variables and parameter settings

Figure 1 organizes all the model’s variables and shows which
parameters are necessary to be set. First, fc; d; e; fg are parameters
that describe the gamma distributions. These are all set to 10−6 as is
done usually to make them noninformative (Tipping, 2001). The
parameters fa; bg describe the beta distribution that controls the
probabilities whether a particular basis function generates a particu-
lar training subset. As discussed in Paisley and Carin (2009) as
L → ∞, the sparsity of zðiÞ is a random variable drawn from a Pois-
son’s distribution, Poisson ða∕bÞ. In practice, however, we fix L to
a specific number, and as is shown by Zhou et al. (2009), the param-
eters fa; bg are in general noninformative with the sparsity inferred
from the data. Thus, we set a ¼ 1 and b ¼ T∕8 as specified by
Zhou (2012).

In our experiments, the upper limit of the dictionary’s size L is set
to L ¼ 256. Similar results are obtained with L ¼ 512 (Zhou et al.,
2012), and therefore to reduce the computational cost, the former
was set. However, to learn more basis functions for future investi-
gations, we fixed this number and did not allow shrinking. As dis-
cussed before, in equation 4, the training data can be extracted from
many signals or from just one provided that there is enough data
to prevent under-fitting. We performed the experiments on the
reconstruction of 128 × 128 signals. Each signal was reconstructed
individually; that is, for each 128 × 128 signal, only training data
from that signal was used. Each xðiÞ was of size 8 × 8 extracted from
the 128 × 128 signal with overlaps. Further information on the
patch processing can be found in Zhou et al. (2009).

Initialization, inference, and analogy with POCS

All the unknown variables fzðiÞgTi¼1; fsðiÞgTi¼1; fdlgLl¼1; fπlgLl¼1;
fϵðiÞgTi¼1 need to be inferred using the observed training data. Ana-
lytic equations for each variable have been derived in Zhou et al.
(2012), where the conditional probability distribution of each, con-
ditioned on all others, is obtained. Thus, it is possible to find an
approximate solution by alternating between the variables, keeping
the ones that have already been estimated fixed and estimating the
one that is not fixed. To start, all variables have to be initialized.
The term D is initialized based on a singular-value decomposition
(SVD) of X which was found to converge faster as opposed to ran-
dom initialization. Furthermore, the noise precision γϵ is initialized
and scaled by the inverse variance of the available training data in a
similar fashion as in Tipping and Faul (2003). This way, we ensure
that the noise variance is not overestimated. All other variables are
initialized randomly from their respective prior distributions.
An analogy can be drawn between BPFA and POCS. POCS

transforms X to a predefined sparse domain (e.g., Fourier) and es-
timates the coefficients of the sparse transform of the data. The same
idea of decomposing the data as the linear combination, X ¼ DW,
is used. The termsW are the Fourier coefficients, andD is the Fourier
base, where in the case of POCS (Abma and Kabir, 2006), the fast
Fourier transform (FFT) operator is used for efficiency. One iteration
of POCS is analogous to one iteration of BPFA for obtaining the
coefficients W but only partly. BPFA then considers the coefficients
(or rather the variables that compose the coefficients fsðiÞgTi¼1 and
fzðiÞgTi¼1) as fixed and obtains the dictionary D.

SEISMIC EXPERIMENTS

Seismic surveys usually consist of arrays of sources and receivers
in a generally regular pattern at or near the earth’s surface. Body
waves created by a surface source are reflected back by impedance
changes caused by changes in rock properties. The reflected waves
are recorded by receivers on a continual basis and then discretized.
A schematic of this setup is illustrated in Figure 2a. Figure 2b
shows, for illustration purposes only, a plot of a multivariate Gaus-
sian distribution to help the discussion about the different domains
used. The x- and y-axes correspond to the spatial coordinates of the
receivers, and the z-axis corresponds to time. We make use of the
shot record domain keeping constant only one of the x- or y-coor-
dinates, giving a 2D projection with the time on one axis and the
respective coordinate on the other. Furthermore, in the time slice, x
and y coordinates are used and the z-axis, time, is kept constant.
Missing receiver data are different in the shot record and in the time

a)

b)

Figure 2. An illustration of a typical seismic survey setup with a
regularly spaced grid of receivers (a). A multivariate Gaussian dis-
tribution plotted for illustration purposes only, to aid in the explan-
ation of the different seismic domains (b).
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slice domain. For the former, if a receiver’s data are missing, then
the corresponding column of data points is missing. On the other
hand, for a time slice, this means that only one data point is missing
on the location of the receiver. To perform comparisons, test data
were extracted from a synthetic data set that was generated numeri-
cally using the SEAM-II (Oristaglio, 2012) model as input. The
modeling was carried out by BP in Houston. Results of the experi-
ments in CS and denoising follow.

CS results

The aim of the experiments is to show the level of reconstruction
accuracy with varying number of receivers both removing them ran-
domly or regularly. Furthermore, the computational cost is exam-
ined, and illustrations of learned basis functions from BPFA are
provided. In all experiments, the SPGL1 package (van den Berg
and Friedlander, 2007) with the DCT is used. Similarly, for POCS,
the MATLAB code (Abma, 2011) was used, and for BPFA the pack-
age in Zhou (2012) was applied to the problem. One figure of merit
for evaluating the reconstruction accuracy is feature similarity
(FSIM) (Zhang et al., 2011), which creates phase congruency and
edge detection feature maps for the reconstruction and for the original
signals. More specifically, FSIM is calculated by

FSIM ¼
P

i∈ΛSLðiÞPCmðiÞP
i∈Λ

PCmðiÞ
; (12)

where Λ is the space of the signal, PCmðÞ is the maximum phase
congruency between the two signals at a specific location, and
SLðiÞ ¼ SPCðiÞSGðiÞ, where

SPCðiÞ ¼
2PC1ðiÞPC2ðiÞ
PC2

1ðiÞ þ PC2
2ðiÞ

(13)

and

SGðiÞ ¼
2G1ðiÞG2ðiÞ
G2

1ðiÞ þG2
2ðiÞ

: (14)

The terms PC1ðÞ and G1ðÞ are the phase congruency and edge
detection maps of the original, respectively, and PC2ðÞ andG2ðÞ are
the respective maps of the reconstruction. Using these two feature
maps for the original and reconstruction, FSIM compares their sim-
ilarity. Higher values (closest to 1.00) indicate greater similarity.
In addition, the quality of reconstruction Q is also calculated to

provide a better understanding about the differences in accuracy.
The quality Q is defined as in Kazemi et al. (2016) by

Q ¼ 10 log
kxk22

kx − x̂k22
; (15)

where x is the original signal and x̂ is the reconstruction.

Variability of parameters for algorithms

Different initialization of parameters, patch sizes that they oper-
ate on, the choice of the basis functions for SPGL1, stopping criteria
for all algorithms, different thresholding operators for POCS to

name a few, all can affect the results. To address this variability in
full, experiments with all possible setups are necessary. However, in
this paper, we decided to explore two key elements: the patch size
and the stopping criteria. We performed experiments in the time
slice domain for POCS and SPGL1 to determine a suitable set
of parameters. The choice of the dictionary for SPGL1 was fixed
to the DCT. The parameters of BPFAwere fixed to those discussed
in the previous section. To ensure that the results are consistent over
different instances of signals with different structures and variance,
we have extracted 250 sections of size 128 × 128 from time slices
and 200 sections of size 128 × 128 from shot records from the
SEAM-II data set described earlier.

POCS configurations for time slices

We experimented with different numbers of iterations for the al-
gorithm to terminate, and the patch size was varied between f8 × 8;
16 × 16; 32 × 32; 64 × 64; 128 × 128g and nonoverlapping. A plot
of mean Q against the measurements over all sections is given in
Figure 3a. It can be seen that the larger the patch size, the better the

a)

b)

Figure 3. Mean Q plots over 250 sections of time slices of size
128 × 128. Different POCS configurations (a) are explored by vary-
ing the number of iterations to termination (first number in the
legend) and by varying the patch size (second number in the legend).
Different SPGL1 configurations (b) are explored by varying the patch
size (number in the legend).
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reconstruction using the Fourier transform. The configuration with
the best performance in our experiments operates on 128 × 128

patches; however, the number of iterations is not obvious whether
using 500 or 1000 iterations — the results are very similar with
1000 iterations being slightly better. Therefore, in the follow-
ing comparisons, POCS with 500 iterations and a patch size of
128 × 128 will be used as the best compromise between time and
accuracy.

SPGL1 configurations for time slices

SPGL1 can be modified greatly with regard to its stopping
criteria, and an exhaustive parameter search would be required. One
stopping criterion checks the residual between the available mea-
surements and the estimation, another checks convergence of
intermediate solvers, and another sets the maximum number of iter-
ations. We experimented with the value of the residual and suggest
using a difference that is much smaller than the l2 norm of the
available data, e.g., between 10−6kyk2 and 10−9kyk2. Figure 3b
shows the mean Q with patch sizes from 8 × 8 to 128 × 128. The
128 × 128 patch size gives the best performance when < 85%

of the measurements are used, slightly better than 32 × 32 and much
better than the rest. Larger patch sizes could perform better if the
stopping criteria were tuned, i.e., by changing the number of iter-
ations. From these experiments, we chose the 128 × 128 SPGL1
configuration to compare against the BPFA because it gives the best
accuracy.

Time slice comparisons of different algorithms

Using the selected configurations, we use the same 250 sections
of time slices to compare against BPFA. BPFA parameters were
fixed to the ones discussed in the previous section. Figure 4a shows
the mean FSIM plotted for BPFA, SPGL1, and POCS for varying
percentages. BPFA outperforms both algorithms when 25% and
greater receivers are used. With fewer, BPFA does not have suffi-
cient training data to learn the basis functions (discussed in more
detail later). POCS performs better than SPGL1 when 55% of
receivers and fewer are used. Figure 4b shows the meanQ for differ-
ent measurements.
There are some differences with BPFA performing better than

both other algorithms when measurements are between 30% and
60%. POCS performs better than SPGL1 with 30% and fewer and
SPGL1 is better than both algorithms with 70% and greater mea-
surements used. An example using all algorithms can be seen in
Figure 5 with the error difference maps in Figure 6.
BPFA performs significantly better than the other algorithms by

learning the appropriate dictionary of basis functions. A collection
of learned basis functions can be seen in Figure 7. We will discuss
later in the Discussion section some technical insights on what
makes the performance of one algorithm better than another and
potential reasons for the metrics’ differences.

Lower limit for BPFA

Learning a dictionary of basis functions is not always possible.
When the percentage of receivers used is less than 25%, the model
underfits with not enough training data and it already starts to per-
form badly with <30% (Figure 4). Figure 8a shows a section from a
time slice with only 30% of the data. The BPFA reconstruction in
Figure 8b is successful by learning the basis functions in Figure 8e
that capture the signature of the time slice and fit the data well.
Nevertheless, when only 20% are used in Figure 8c, the basis func-
tions learned in Figure 8f do not capture the variations in the data,
which results in poor reconstruction as seen in Figure 8d.

Computational complexity

Depending on the convergence criteria, the algorithms could ter-
minate earlier than expected; nevertheless, the worst-case scenario
is mentioned here. The SPGL1 is composed of three potentially
heavy computational steps: two matrix–vector products and a step
that computes the projection of data. The worst-case complexity for
the projection is Oðn log nÞ, where n is the dimensionality of the
signal, but on average it performs much better (van den Berg and
Friedlander, 2009). POCS main computations are the FFT and in-
verse FFT (IFFT), which are Oðn log nÞ (Abma and Kabir, 2006),
and are also dependent on the number of iterations until termination.
BPFA scales linearly as a function of the patch sizeK, the dictionary
size L, the sparsity level T0 of the signals, and the number of avail-
able training data T (Zhou et al., 2009).

a)

b)

Figure 4. Mean reconstruction accuracy over 250 sections of time
slices of size 128 × 128 for different measurements using FSIM
(a) and Q (b) as quality measures. BPFA results are shown with
25% being the least possible percentage.
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The orders of computational complexity are generally informative;
however, because there are many algorithmic variations, we recorded
the computational time to get a better understanding of their cost. All
experiments were performed as single-core jobs on machines with
Intel Xeon CPU E5-2650 with 2.00GHz. The mean computational
time for three different percentages for all three algorithms is shown

in Table 1 averaged over all 250 sections along with the mean FSIM
and Q. Experiments were performed using the respective MATLAB
packages. The configurations used were the same as the ones used in
the reconstruction accuracy experiments. POCS is the fastest solver
with the use of the FFToperator. BPFA is the slowest due to the extra
requirement of learning the basis functions.
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Figure 5. An example of a section from a time slice from the SEAM-II data set (a) using only 30% of the receivers (b). Reconstructions with
different algorithms are illustrated showing POCS (Q = 30.75 db) (c) doing better than SPGL1 (Q = 25.51 db) (d). BPFA (Q = 35.45 db) (e) is
better than both by learning the appropriate basis functions (f) for the given section.
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Figure 6. Maps of the absolute reconstruction error for each algorithm for the signal in Figure 5. (a) The error of POCS that is visible in the
regions of large changes. (b) The error of SPGL1 which is larger. (c) The minimal error of the BPFA.
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Shot record comparisons of different algorithms

Missing data in the shot record domain is equivalent to columns
of missing data points (often called traces). Thus, the pattern of data
removal differs from that in the time slice domain and investigating
its effect on performance is required. In addition, the signal structure
is different and therefore it is worth investigating whether the basis
functions learned are different. Two hundred sections of size
128 × 128 of shot records were extracted from the SEAM-II data
set. Different sized blocks of traces of width f2; 4; 8g were removed
every f4;8;16;32;64;128g traces from the starting point of removal.
The configurations of the algorithms were set based on the time slice
experiments. POCS was used with 500 iterations and on 128 × 128

patches. The SPGL1 was set with the DCT with the same stopping
criteria as before and operating on 128 × 128 patches. BPFA had the
settings mentioned in the previous section. An example of shot record
reconstruction can be seen in Figure 9.
Figure 10 shows an ensemble of dictionaries learned from different

sections of shot records. The signal variations captured by the basis
functions are similar to those learned for the time slice domain, with
the difference that there are two main orientations of signal changes
approximately on 45° and 135° as opposed to approximately four
orientations in the time slice domain (Figure 7). This illustrates that

Figure 7. Each dictionary of 256 basis functions is learned from an
individual section of a time slice, resulting in as many dictionaries
as reconstructions. An ensemble of dictionaries is available that cap-
tures different signal variations (depending on the time slice used
for training) with different orientations of large changes.
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Figure 8. Example of a section from a time slice from the SEAM-II data set using only 30% of the receivers (a). BPFA reconstruction (b) by
learning appropriate basis functions (e). If the training data are 20% (c) the model underfits (d) with the learned basis functions not capturing all
the variations in the data (f).
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if the dictionaries learned in the time slice domain were used in the
shot record domain, almost half of the basis functions would have
been redundant with different features being important in different
domains.
The mean FSIM and mean Q for 200 sections of size 128 × 128

from shot records for BPFA, SPGL1 with DCT and POCS are illus-
trated. When blocks of two, in Table 2, or four traces, in Table 3, are
missing, BPFA is the best on average. However, in the case of
blocks of eight missing in Table 4, BPFA performs badly. This is
due to the fact that BPFA splits each 128 × 128 section to 8 × 8

patches and thus BPFA does not have sufficient training data. Fur-
ther analysis is given in the “Discussion” section.

Denoising results

The task of denoising is estimating the level of
noise and choosing the appropriate basis func-
tions with the correct coefficients that correspond
to the noise-free signal. Usually, the dictionary is
prefixed and chosen to provide a sparse represen-
tation. In this paper, we propose using BPFA to
learn the basis functions from the available data
as was done in recent studies (Beckouche and
Ma, 2014; Zhu et al., 2015). To evaluate the
performance of BPFA, we used the SEAM-II
data set and added Gaussian noise with increasing
levels of distortion, controlled by the noise vari-

ance. We extracted 200 sections of size 128 × 128 from time slices
of varying structures and 200 sections of size 128 × 128 from shot
record signals. We compared BPFA against the K-SVD, which has
shown success in seismic denoising (Turquais et al., 2015; Zhu et al.,
2015). The K-SVD results were produced using the MATLAB pack-
age from one of the authors’ website (Elad, 2006) and the BPFA re-
sults from the same source as before (Zhou, 2012). We have used the
predefined settings of the packages with no tuning.
Different levels of noise in the seismic signals translate to a vary-

ing signal-to-noise ratio (S/N). There are numerous definitions of
the S/N and it is difficult to compare between studies. However,
in this paper, the important value is not the S/N but rather the quality
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Figure 9. Shot (a) reconstruction from pattern of removal of four receivers missing every eight receivers (b). POCS (Q = 22.97 db) (c) performs
better than SPGL1 (Q = 21.50 db) (d) but BPFA (Q = 29.54 db) gives the best accuracy (e) with learned basis functions (f).

Table 1. Accuracy and time trade-off analysis for different algorithms averaged
over 250 sections of 128 × 128 of time slices (bold are best values).

Trade-off between accuracy and computation

Percentage
used

30% 60% 90%

Time (s) FSIM/Q (db) Time (s) FSIM/Q (db) Time (s) FSIM/Q (db)

BPFA 218.73 0.985/21.7 396.49 0.999/38.1 579.24 0.999/44.1

POCS 13.94 0.938/18.5 12.55 0.990/27.8 14.23 0.998/41.2

SPGL1 33.85 0.919/18.2 33.15 0.991/37.6 21.53 0.999/55.1

Seismic feature learning O99

D
ow

nl
oa

de
d 

07
/1

9/
18

 to
 1

31
.1

11
.1

84
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



of reconstruction Q of each algorithm and how it
compares with the other. In our experiments, we
varied the noise variance to control this ratio and
we define it as it was done in the denoising study
(Kazemi et al., 2016) with

S∕N ¼ α2rms

σ2n
; (16)

where αrms is the root mean square amplitude of
the noise-free signal and σ2n is the noise variance.
Our experiments were undertaken over multiple
seismic signals, and thus the mean S/N was cal-
culated over all signals. Six different values of
the noise variance were used, resulting in six dif-
ferent mean S/N values for time slices and six for
shot records. To evaluate the reconstruction, we
define the quality as was defined in equation 15.
The mean Q for all sections is plotted against

varying mean S/N values. It can be seen in Fig-
ure 11a and 11b that the BPFA attains higher lev-
els of Q than the K-SVD for all S/N, illustrating
its superiority. Because accuracy is not always
enough, the computational time is shown in Fig-
ure 11c with the K-SVD being faster than the
BPFA. Nevertheless, by learning basis functions
and finding the most popular dictionaries, it
could be possible to reuse them without needing
to learn every time. An example of time slice
denoising by both algorithms can be seen in Fig-
ure 12 and for shot record denoising in Figure 13.
The BPFA learns a dictionary of basis functions
with high-frequency characteristics as opposed to the K-SVD.
Using these basis functions, it can reconstruct more details.

CS and denoising

To illustrate the potential of BPFA, we experimented also with
both denoising and at the same time interpolating the data. An ex-
ample of this can be seen in Figure 14, where 50% of the receivers
are used and, on those, Gaussian noise is added with S∕N ¼ 20.84.
BPFAwas able to reconstruct the signal preserving the most impor-
tant features even with the presence of noise.

DISCUSSION

Different configurations of the algorithms’ parameters can yield
different results in performance, in reconstruction accuracy and in

Figure 10. Each dictionary is trained on a section of a shot record with a certain percentage of receivers.

Table 4. Reconstruction accuracy with patterns of removal of
blocks of eight traces (bold are best values).

Shot record accuracy with missing traces of blocks of eight

Pattern 16 32 64 128

FSIM/Q (db) FSIM/Q (db) FSIM/Q (db) FSIM/Q (db)

BPFA 0.775/15.7 0.857/21.4 0.928/26.6 0.986/36.4

POCS 0.881/26.2 0.938/29.8 0.963/32.2 0.977/33.8

SPGL1 0.895/26.8 0.949/30.9 0.971/33.4 0.982/35.0

Table 3. Reconstruction accuracy with patterns of removal of blocks of four
traces (bold are best values).

Shot record accuracy with missing traces of blocks of four

Pattern 8 16 32 64 128

FSIM/Q (db) FSIM/Q (db) FSIM/Q (db) FSIM/Q (db)] FSIM/Q (db)

BPFA 0.976/35.4 0.979/38.9 0.996/46.0 0.999/48.2 0.999/49.3

POCS 0.899/27.1 0.957/31.9 0.972/34.5 0.983/36.3 0.990/37.6

SPGL1 0.936/30.1 0.976/36.6 0.988/40.1 0.993/42.3 0.995/43.5

Table 2. Reconstruction accuracy with patterns of removal of blocks of two
traces (bold are best values).

Shot record accuracy with missing traces of blocks of two

Pattern 4 8 16 32 64 128

FSIM/Q
(db)

FSIM/Q
(db)

FSIM/Q
(db)

FSIM/Q
(db)

FSIM/Q
(db)

FSIM/Q
(db)

BPFA 0.981/37.6 0.993/46.4 0.999/50.8 0.999/52.9 0.999/53.9 0.999/54.4

POCS 0.905/26.8 0.968/33.1 0.978/36.1 0.985/38.2 0.992/39.7 0.995/40.7

SPGL1 0.943/32.7 0.992/42.5 0.997/46.8 0.999/50.3 0.999/52.0 0.999/52.8
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computational time. In addition, different data sets and different do-
mains of operation (time slice and shot record) can give different
results. To obtain the best possible combination, an exhaustive
parameter search would be necessary. This would require many ex-
periments, and this is not the purpose of the paper; nevertheless, we
chose to experiment in the time slice domain with certain parameter
settings that we think are essential for an algorithm’s success. These
are the convergence criteria and the patch sizes. We varied the patch
size for POCS and SPGL1 and obtained different accuracy and
computational times with fixed convergence criteria over 250 sec-

tions to allow for variability in the data set. For POCS, we varied the
number of iterations as well. The initialization of BPFAwith regards
to the noise variance was set appropriately to avoid overestimation.
Overestimating the noise variance leads to under-fitting, the algo-
rithm would assume that early termination is justified because var-
iations are explained by noise.
From the POCS experiments, the performance with the best

reconstruction accuracy was obtained when the patch sizes and
the number of iterations were the largest. Larger patch sizes contain
more signal structure, and this could allow the algorithm to use

a) b) c)

Q
 (

db
)

Q
 (

db
)

T
im

e 
(s

)

Figure 11. Mean reconstruction accuracy for time slices (a), for shot records (b) and mean computational time (c) for time slices for 200 sec-
tions of 128 × 128 per domain with varying S/N.
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Figure 12. A section of a time slice from the SEAM-II (a) is corrupted (S/N = 20.67) (b). BPFA (Q = 24.82 db) (d) obtains better quality than the
K-SVD (Q = 24.25 db) (c). The learned basis functions of K-SVD (e) and BPFA (f) are shown. BPFA puts greater emphasis on higher frequencies.
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more information for reconstruction. Running for a longer time
allows POCS to reconstruct more signal details, high- and low-fre-
quency components. However, from our experiments, the difference
in reconstruction is not large enough to deem the extra computa-
tional time necessary. This could be the case when using more di-
mensions. In the SPGL1 experiments, the convergence criteria were
set fixed but we performed some preliminary experiments on the
residual tolerance and suggest that the residual should be orders
of magnitude smaller than the l2 norm of the available data. Another
technical insight that might improve the SPGL1 is the formulation
of the problem in equation 2. Collapsing the signal leads to the loss
of some location information, and changing this could be useful in
the reconstruction.
To evaluate the performance of BPFA, we used two different

reconstruction accuracy measures: the FSIM as defined in equa-
tion 12 and the quality Q as defined in equation 15. With FSIM,
the emphasis is on evaluating the accuracy with respect to the fea-
tures present in the original and in the reconstruction. Features are
sudden changes in the signal with different orientations and mag-
nitude. On the other hand, Q evaluates the reconstruction over the
entire signal. Using both measures, BPFA outperforms the rest of
the algorithms in general. In the FSIM evaluation, BPFA is by far
better due to the fact that it learns basis functions that resemble
the features contained in the signals. Because FSIM focuses on
obtaining and reconstructing the features, the performance of BPFA
in this metric is better.

The data set contains signals with varying structures with differ-
ent variance, containing high- and low-frequency characteristics.
When there are not enough measurements available (i.e., < 60%),
the fixed basis functions used by POCS and SPGL1 do not capture
all these variations, especially the high frequencies. BPFA is able to
adapt the basis functions and is able to capture the high frequencies,
the details of the signals, resulting in a higher quality of recon-
struction. Nevertheless, it is worth mentioning that the dictionary
of basis functions learned by the BPFA is not optimum for the signal
at hand. The optimization problem solved is nonconvex with only a
local solution obtained. Different initialization provides different
basis functions and is thus very sensitive to the starting point. How-
ever, the set of basis functions in practice yield a significant increase
in reconstruction accuracy.
Due to the fact that the learning of basis functions is done simul-

taneously with reconstruction/denoising, BPFA uses a distorted
version of the seismic signals. However, dropping out or adding
noise in the training data is in fact recommended as a regularizer.
The percentage of measurements dropped out in the training data is
important. In our experiments, we found that dropping out more
than 75% of the measurements does not allow enough training data
for BPFA to learn basis functions and under-fits. With more mea-
surements available there is a higher quality of reconstruction, but,
the basis functions learned are not necessarily the most informative.
In Figure 4b, BPFA performs better between 30% and 60%; any
basis functions learned between that range could be suitable.
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Figure 13. A section of a shot record from the SEAM-II (a) corrupted (S/N = 21.28) (b). BPFA (Q = 24.21 db) (d) obtains higher
reconstruction quality than K-SVD (Q = 23.20 db) (c). The learned basis functions of K-SVD (e) and BPFA are also illustrated (f).
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Varying the percentage of receivers used and evaluating the basis
functions obtained is an interesting research question.
Experiments in the time slice and in the shot record domain pro-

vided similar reconstruction accuracy, with BPFA being better in
both domains given enough training data. However, one significant
difference is the dictionary of basis functions learned. By using the
data in different domains, the signal structure is different, and thus it
is necessary to have different sets of basis functions that correspond
to this and do not use the assumption that the basis functions suit-
able in one domain would be suitable in the other. Basis functions
learned in the time slice and in the shot record differ in the orien-
tations of the signals’ largest variations.
The computational time of the algorithms was also recorded with

BPFA being the slowest. Building on this work, a universal diction-
ary of basis functions could be learned where relearning every time
would not be necessary, thus reducing the computational time. Fur-
thermore, informed initialization of BPFA with previously learned
basis functions or even initializing BPFAwith other analytic sparse
transforms (Fourier, Radon, and curvelets) could allow for faster
convergence. Finally, faster algorithms have been introduced re-
cently that could help speed up the inference (Sertoglu and Paisley,
2015).

CONCLUSION

BPFA is introduced for seismic CS and denoising. CS experi-
ments were undertaken with regular and irregular sampling, using
synthetic data provided by BP. Different percentages of receivers

were used, and different sampling schemes were
carried out to investigate the performance of
BPFA for seismic data acquisition. Comparisons
with other algorithms in the literature have
shown that BPFA provides state-of-the-art recon-
struction accuracy. Features via basis functions
were learned using the available measurements.
Denoising is also possible using BPFA providing
much cleaner and more detailed signals than the
K-SVD. A combination of CS and denoising was
also illustrated.
The importance of learning basis functions

from seismic data is growing. BPFA is an excel-
lent example of how the reconstruction accuracy
can be improved greatly with learned basis func-
tions rather than by using predefined dictionaries.
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Figure 14. Reconstruction of a section of 128 × 128 of a time slice (a) with noise and
missing receivers (b) using the BPFA (c). The BPFA is able to learn basis functions with
the presence of noise and missing receiver data (d).
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