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ABSTRACT

Missing traces in seismic surveys create gaps in the data
and cause problems in later stages of the seismic processing
workflow through aliasing or incoherent noise. Compressive
sensing (CS) is a framework that encompasses data
reconstruction algorithms and acquisition processes. How-
ever, CS algorithms are mainly ad hoc by focusing on data
reconstruction without any uncertainty quantification or fea-
ture learning. To avoid ad hoc algorithms, a probabilistic data-
driven model is used, the relevance vector machine (RVM), to
reconstruct seismic data and simultaneously quantify uncer-
tainty. Modeling of sparsity is achieved using dictionaries of
basis functions, and the model remains flexible by adding or
removing them iteratively. Random irregular sampling with
time-slice processing is used to reconstruct data without ali-
asing. Experiments on synthetic and field data sets illustrate
its effectiveness with state-of-the-art reconstruction accuracy.
In addition, a hybrid approach is used in which the domain of
operation is smaller while, simultaneously, learned diction-
aries of basis functions from seismic data are used. Further-
more, the uncertainty in predictions is quantified using the
predictive variance of the RVM, obtaining high uncertainty
when the reconstruction accuracy is low and vice versa. This
could be used for the evaluation of source/receiver configu-
rations guiding seismic survey design.

INTRODUCTION

A seismic survey acquires data and allows processing and imaging
that leads to an image of the interior structure of the earth. An arti-
ficial source of body waves is used at the surface. This creates re-
flections from deep impedance changes at rock layer boundaries,
and receivers record these reflections. Nevertheless, receivers or

sources, occasionally, cannot be placed in restricted locations. Being
able to obtain seismic data from fewer receivers and sources without
significantly compromising their quality is not only essential when
they are missing, but it has great importance for environmental, eco-
nomic, and safety reasons. It is also an important part of seismic data
processing because it benefits other steps such as migration.
Seismic compressive sensing (CS) is a framework that encom-

passes data reconstruction algorithms and also guides the data acquis-
ition process. The data reconstruction aspect uses the assumption of
sparsity for seismic data. Seismic events are assumed to be sparse in
some transforms such as the Fourier (Sacchi et al., 1998; Gülünay,
2003; Liu and Sacchi, 2004; Xu et al., 2005; Abma and Kabir, 2006),
the Radon (Kabir and Verschuur, 1995; Trad et al., 2002), the curvelet
(Hennenfent and Herrmann, 2008; Herrmann and Hennenfent, 2008;
Naghizadeh and Sacchi, 2010a; Shahidi et al., 2013), the focal (Kut-
scha and Verschuur, 2016), the seislet (Fomel and Liu, 2010; Liu and
Fomel, 2010; Gan et al., 2015, 2016), and the shearlet (Kong and
Peng, 2015) transforms. These dictionaries of basis functions are
used in conjunction with a sparse solver to obtain a solution.
In particular, projection onto convex sets (POCS) (Abma and Ka-

bir, 2006) can transform the data to any domain, more traditionally to
the Fourier domain, and it uses hard or soft thresholding (Stanton
et al., 2015) when choosing which components to keep in the sol-
ution. Another solver such as iteratively reweighted least-squares
was also proposed (Zwartjes and Sacchi, 2007) to suppress the arti-
facts in the Fourier domain. For the curvelet transform, the iterative
soft thresholding (IST) approach (Herrmann and Hennenfent, 2008)
has been suggested. A faster version of ISTwas proposed (Beck and
Teboulle, 2009), namely, the fast iterative soft thresholding algo-
rithm, and then it was applied to seismic data (Pérez et al., 2013).
Other techniques include reconstruction using wavefront attributes
(Gajewski and Xie, 2017), hybrid sparsity-rank constraint (Zhang
et al., 2017), and damped rank-reduction (Chen et al., 2016). In a
comparison of interpolators, POCS was found to better preserve
the amplitudes of seismic data (Stanton et al., 2012).
A different approach is to solve the l1-norm minimization prob-

lem. The spectral projected gradient for L1 (SPGL1) (van den Berg
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and Friedlander, 2009) was proposed to solve this and is used in the
literature obtaining state-of-the-art results with various dictionaries
(Jingjie et al., 2015; Kutscha and Verschuur, 2016). Other
methods of seismic data reconstruction include matrix and tensor
reconstruction (Trickett et al., 2010; Oropeza and Sacchi, 2011;
Kreimer and Sacchi, 2012; Gao et al., 2013; Kumar et al., 2015)
via rank and nuclear norm minimization. These rank reduction solv-
ers assume that missing traces and noise increase the rank of the
data matrix and thus try to minimize it.
An alternative to the predefined dictionaries would be to learn the

basis functions from the available seismic data. This approach was
used by Zhu et al. (2015) for the purpose of denoising seismic data.
The main algorithm is a modification of the K-singular value de-
composition (Elad and Aharon, 2006), which alternates between
optimizing the coefficients and the dictionary, for the given data.
Furthermore, simultaneous denoising and feature learning of seis-
mic data were performed by Beckouche and Ma (2014), and further
dictionary learning for denoising was undertaken by Turquais et al.
(2015). Another approach is to use a data-driven tight frame and
learn a set of filters (features/basis) to sparsely represent the seismic
data (Liang et al., 2014) obtaining results similar to POCS. Yu et al.
(2015) extend this method for high-dimensional seismic data with
great reconstruction accuracy but high computational cost. Yu et al.
(2016) use fewer patches during training by carefully selecting
optimum patches depending on their variance to speed up the proc-
ess. An alternative to speeding up the learning process using tight
frames was studied by Siahsar et al. (2017) who use a nonnegativity
constraint to reduce the space of the solution, consequently decreas-
ing the computational cost and boosting sparsity in data
representation.
Recently, machine-learning techniques have been introduced to

predict missing receivers’ values. Support vector regression (SVR)
(Jia and Ma, 2017) has been used for seismic data reconstruction
by learning a hyperplane that describes the relationship between input
and output data. A faster version has been proposed by Jia et al.
(2018), which uses a subset of the training data using Monte Carlo
machine learning. A probabilistic version of SVR is the relevance vec-
tor machine (RVM) (Tipping, 2001), which again learns a function of
inputs to outputs but is built around a probabilistic framework. This
was used by Pilikos and Faul (2016) for seismic data reconstruction
and obtained better results compared with POCS and SPGL1. Another
machine-learning technique is beta process factor analysis (BPFA)
(Paisley and Carin, 2009; Zhou et al., 2012), which learns dictionaries
of basis from seismic data with success (Pilikos and Faul, 2017) and
has no signs of aliasing in the frequency-wavenumber (f-k) domain
(Pilikos et al., 2017). The latter two techniques are based around a
Bayesian CS (Ji et al., 2008) framework. An excellent introduction
to the Bayesian inference field for seismic data is given by Duijndam
(1988a, 1988b) and Ulrych et al. (2001).

Contributions

Within this framework, we propose to use the RVM to reconstruct
undersampled data and simultaneously quantify uncertainty in pre-
dictions. Reconstruction accuracy and computational speed analysis
are performed on synthetic data. The main domain used in the experi-
ments is the time slice over all time steps in the data set. Note that the
reconstruction is done in this domain, but then the data are resorted in
shot gathers as in traditional seismic data reconstruction. We also use
irregular undersampling to avoid aliasing in the f-k domain (Kumar

et al., 2015). In particular, random placement of receivers is used, and
we show why this is advantageous for the RVM. This arrangement of
receivers/sources is not currently used in the field, but if high
reconstruction accuracy can be achieved, the acquisition design proc-
ess could change in the future. Furthermore, we use the Bayesian
inference framework and obtain uncertainties for predictions. We
vary the configuration of receivers, and we obtain uncertainty maps
and illustrate that the uncertainty of the model is low when the
reconstruction accuracy is high and vice versa.
In addition, we propose to use a hybrid approach. The domain of

operation is reduced, and at the same time learned dictionaries
of basis functions for seismic data are used by the RVM and
SPGL1. These approaches are referred to as RVM-learned and
SPGL1-learned, respectively, and we illustrate the improved
reconstruction accuracy achieved while using small patch sizes.
The f-k domain analysis demonstrates that the reconstructions
can be achieved without any signs of aliasing. We also provide
analysis on different parts of the signal and propose different
configurations of algorithms for improved overall reconstruction
accuracy.

Notation

Bold lowercase letters such as w represent column vectors, bold
uppercase letters such as Φ represent matrices, and k:k represents
the norm of a vector or a matrix. The superscript ðiÞ (e.g., in tðiÞ)
corresponds to a certain sample in a trace.

THE RVM

The RVM is a probabilistic data-driven model that assumes that
data are generated by a linear combination of predefined nonlinear
basis functions. For a collection of available traces N, the model is
defined by

tðiÞ ¼
XL
l¼1

wlϕlðkðiÞÞ þ ϵðiÞ ¼ wTϕðkðiÞÞ þ ϵðiÞ; (1)

where tðiÞ ∈ R is a trace sample, kðiÞ ∈ Rc are the coordinates, w ∈
RL are the coefficients of the linear combination of the transformed
input data, ϵðiÞ ∼N ð0; σ2Þ is independent and identically distributed
(iid) additive noise, and ϕðkðiÞÞ¼½ϕ1ðkðiÞÞ;ϕ2ðkðiÞÞ; :::;ϕLðkðiÞÞ�T
∈RL with each entry being a certain basis function applied to a par-
ticular data point i. The corresponding likelihood function (Tipping,
2001) is given by

pðtðiÞjw;ϕðkðiÞÞ; σ2Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p

× exp

�
−

1

2σ2
ðtðiÞ − wTϕðkðiÞÞÞ2

�
: (2)

Because there are N samples and using the iid assumption,

pðtjw;Φ; σ2Þ ¼
YN
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−

1

2σ2
ðtðiÞ − wTϕðkðiÞÞÞ2

�

(3)
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¼ 1� ffiffiffiffiffiffiffiffiffiffi
2πσ2

p �
N exp

�
−

1

2σ2
kt −Φwk2

�
; (4)

where Φ ∈ RN×L. It is given by Φ ¼ ½ϕ1;ϕ2; : : : ;ϕL� where each
ϕl ∈ RN is the lth basis function evaluated at N available samples.
For CS applications, there is a required assumption that the ac-

quired signal is sparse (or it can be transformed to a sparse domain).
Thus, a prior probability distribution on the model parameters w
that promotes sparsity is required. A normal prior distribution is
preferred, which is conjugate to the likelihood function. Each co-
efficient wl is associated with a different variance that is controlled
by the precision αl. Thus, the prior distribution is given by

pðwjαÞ ¼
YL
l¼1

N ðwl; 0; α−1l Þ ¼
YL
l¼1

ffiffiffiffiffiffi
αl
2π

r
e−

αl
2
w2
l ; (5)

which is a product of zero-mean normal distributions with each dis-
tribution having a precision αl. These parameters scale the normal
distributions according to their value. Suitable priors are the gamma
distributions given by

pðαÞ ¼
YL
l¼1

Gammaðαl; c; dÞ ¼
YL
l¼1

1

ΓðcÞ d
cαc−1l e−dαl ; (6)

where ΓðcÞ ¼ ∫ ∞
0 t

c−1e−tdt is the Gamma function, and c; d are the
scale and shape parameters for the distribution. The noise precision
σ−2 is also modeled by a gamma distribution,

pðσ−2Þ ¼ Gammaðσ−2; e; fÞ; (7)

with e; f being the scale and shape parameters for the gamma dis-
tribution. Typically, the Gamma distributions are chosen to be flat
and the parameters that control them are set to small values such as
c ¼ d ¼ e ¼ f ¼ 10−6 (Tipping, 2001). This results in a hierarchi-
cal prior formulation that provides flexibility in the coefficients. It
allows some probability mass to potentially concentrate on a few
coefficients and others to be zero or close to zero resulting in the
desired property of sparsity. A summary of the RVM is given in the
graphical model of Figure 1.
From Bayes’ rule and conjugacy, we can get the posterior

distribution of the model coefficients being normal with covariance
Σ and mean μ given by

Σ ¼ ðσ−2ΦTΦþ AÞ−1; (8)

μ ¼ σ−2ΣΦTt; (9)

where A is the diagonal matrix diagðα1; α2; : : : ; αLÞ. Inference in-
volves finding the optimum configuration of α and σ2. The original
algorithm (Tipping, 2001) uses a computationally intensive pro-
cedure that obtains these parameters through the inversion of the
covariance matrix.
In this paper, a fast version of the RVM (Tipping and Faul, 2003)

is used, summarized in Algorithm 1. There are different possibilities
for this algorithm. First, the initialization of the noise variance σ2

should be such that the noise is not overestimated. An empirical

study is provided later. The choice of the first basis function is done
by finding the largest normalized projection onto the available data.
That is, the algorithm searches for the largest kϕT

l tk2∕kϕlk2 for all l
and the basis function ϕl with the largest projection is chosen to
initialize the model. Then, this is used to calculate the first αl as

αl ¼
kϕlk2

kϕT
l tk2∕kϕlk2 − σ2

: (10)

In subsequent iterations, the algorithm needs to choose a basis
function from the dictionary and decide what to do with it. This
can be done at random or from a predefined list. To find the greatest
increase in the log-likelihood per iteration, a formula is given in the
appendix of Tipping and Faul (2003) along with update formulas
for the various options that the algorithm can take for either step 6,
7, or 8. The last consideration is the convergence criterion. If there is
no significant difference in the log α for all basis functions, then the
algorithm terminates. A suitable threshold is proposed as 10−6 by
Tipping and Faul (2003).
For completeness, we define two further variables that are used in

Algorithm 1. The term sj is called the sparsity factor, and it gives a

Algorithm 1. Fast RVM.

1: procedure FastRVM

2: Initialize σ2, ϕl, and αl [Details are in the text.]

3: Compute Σ and μ and sl, ql ∀ l

4: Choose a basis function ϕl from the dictionary [Details are in
the text.]

5: Calculate θl ¼ q2l − sl [Details are in the text.]

6: if (θl > 0) and (αl < ∞) then reestimate αl
7: if (θl > 0) and (αl ¼ ∞) then add αl
8: if (θl ≤ 0) and (αl < ∞) then delete αl
9: If not converged, go back to 4.

10: end.

Figure 1. Graphical model of the RVM illustrating the hierarchical
prior on the model parameters. The variable tðiÞ is a sample from a
trace generated by a linear combination of basis functions with co-
efficients wl, where each l corresponds to a basis function. The var-
iable αl is the hyperprior on each coefficient and controls the model
sparsity. σ−2 is the noise precision in the model.
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measure of how much the basis function ϕj overlaps with the basis
functions already in the model. It is defined as

sj ¼ ðϕjÞTðC−jÞ−1ϕj: (11)

The term qj is called the quality factor and is given by

qj ¼ ðϕjÞTðC−jÞ−1t: (12)

Both depend on C, which is defined as

C ¼ σ2Iþ
X
l≠j

ðαlÞ−1ϕlðϕlÞT þ ðαjÞ−1ϕjðϕjÞT; (13)

where ϕj is the jth basis function applied to all available data
points. Using the above, another definition is given by

C−j ¼ σ2Iþ
X
l≠j

ðαlÞ−1ϕlðϕlÞT: (14)

Further information about these and the RVM can be found in
(Tipping and Faul, 2003).
After the algorithm terminates, it returns the statistics of the

model that are Σ and μ. These are used to create the predictive dis-
tribution N ðtð�Þ; σ2�Þ where the predictive mean is

tð�Þ ¼ m� ¼ μTϕðkð�ÞÞ (15)

and the predictive variance is

σ2� ¼ v� ¼ σ2 þ ϕðkð�ÞÞTΣϕðkð�ÞÞ; (16)

where ϕðkð�ÞÞ is a vector of all basis functions in the model calcu-
lated at a missing receiver kð�Þ. Pilikos and Faul (2016) use this for

seismic CS and illustrate that the RVM with the
discrete cosine transform (DCT) obtains better
results than other configurations. We will exam-
ine this further, with analysis on reconstruction
accuracy and uncertainty quantification.

EXPERIMENTAL SETUP

To evaluate the performance of the RVM, we
used a synthetic data set called SEAM-II (Oris-
taglio, 2012; SEG, 2018a). The data set has a
6.25 m spatial sampling. There are 1281 lines
of receivers with 1281 receivers per line span-
ning 8000 m in each direction. The temporal
sampling is 6 ms and each receiver is composed
of 500 time samples resulting in 3 s of record-
ings. Using this data set, we will extract various
time slices and shot records, all using shot gath-
ers to test different algorithms. Note that the al-
gorithms will be tested for common shot gathers
when receivers are missing, but the same princi-

ples hold for common receiver gathers when shots are missing. To
evaluate the reconstruction accuracy of all algorithms, we will use
the reconstruction quality Q defined by
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Figure 2. Regular undersampling (a) results in aliasing in the f-k domain. However,
irregular undersampling (b) introduces incoherent noise in the f-k domain, but not
aliasing.

Figure 4. Time-slice processing illustration. The same sampling
function is used for each time slice. Then, each time slice is used
by an algorithm for processing.
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Figure 3. (a) Using 50% of the randomly selected receivers, (b) us-
ing 50% of the randomly selected receiver lines, (c) reconstruction
of (a) with Q ¼ 47.322 db, and (d) reconstruction of (b) with
Q ¼ 12.524 db. The term r represents the receiver index.

WA282 Pilikos

D
ow

nl
oa

de
d 

07
/1

6/
20

 to
 3

1.
15

3.
11

3.
12

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
s:

//l
ib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
19

-0
20

0.
1



Q½db� ¼ 10 log
kxk22

kx − x̂k22
; (17)

where x is the original signal and x̂ is the reconstruction. This metric
was used by Kazemi and Sacchi (2014) and Kazemi et al. (2016) for
seismic data, among others. It captures the error in the reconstruction
by directly comparing the traces’ values of the predicted and original
signal. We will also use the f-k domain of the reconstructed data to
visualize if there is aliasing or incoherent noise in the frequency
spectrum.

Reasoning behind irregular sampling

Depending on the type of spatial undersampling, the f-k domain
of a shot gather varies. If there is regular undersampling, then the
seismic data could be aliased. This happens when the sampling rate
(in this example, 25 m spacing, which is four times under-sampled)
is not sufficient as can be seen in Figure 2a. However, with the same
amount of undersampling but in random locations (irregular), the
f-k domain does not show any signs of aliasing but rather incoher-
ent noise. This can be seen in Figure 2b, and it was also discussed
by various other authors such as Naghizadeh and Sacchi (2010b),
Naghizadeh (2012), and Kumar et al. (2015). To avoid aliasing, but
at the same time create more efficient seismic surveys, we choose to
undersample seismic data using irregular (random) sampling and
then reconstruct missing values using the RVM. Random sampling
is not realistic for current seismic surveys, but if we do not have
aliasing in reconstructions then the budget and the acquisition de-
sign of seismic surveys could change.

Reasoning behind time-slice processing

We focus on analysing the data in two domains: the x-t domain
(shot record) and the x-y domain (time slice). Missing receivers in
each domain correspond to different patterns of removal. We draw
a number corresponding to the percentage of receivers, from the
uniform distribution between 1 and 100. If it is less than or equal to
the percentage used, the sampling function corresponding to the
receiver is set to 1, or otherwise to 0. We use the RVM to recon-
struct a section of a time slice with the same percentage of receiv-
ers used but using two different sampling functions. Figure 3a
shows the seismic time slice used for the experiment by the
RVM with the sampling function for time slices for 50% of receivers
randomly selected. Figure 3b shows the same signal but using the
sampling function for the x-t domain for 50% of receiver lines
randomly selected. Reconstructions are shown in Figure 3c and
3d. We can see that the reconstruction using the sampling function
with randomly missing receivers has better reconstruction quality,
Q ¼ 47.322 db, as expected, as opposed to the reconstruction using
the sampling function with randomly missing receiver lines with
Q ¼ 12.524 db.
These results are due to the fact that missing receivers in the x-t

domain correspond to entire missing columns from the training
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Figure 5. (a) Original section of 128 × 128 receivers extracted from
a time slice and (b) the same signal using only 50% of receivers.
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Figure 6. Plot of the reconstruction quality Q against the log noise
standard deviation. When the noise standard deviation is very small
or very large, the quality worsens.
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data. For the RVM, this is a problem because there are not enough
training data to learn a model that describes the variations in those
regions. Therefore, in all subsequent experiments, we will be using
time slices as the domain for reconstructing seismic data over all
time samples and then re-sort the data back in the x-t domain as
done in traditional seismic data reconstruction. Figure 4 illustrates
this idea. Note that, for each time sample, the receivers removed are
in the same locations. This results in lines missing in the x-t domain
as done traditionally.

Empirical initialization of noise
variance

From Algorithm 1, we need to initialize model parameters such
as the noise variance σ2. An empirical study is performed but more
specifically for the noise standard deviation σ. In total, 11 different
values for this are tested from σ ¼ 10−18 to σ ¼ 10−8, with an incre-

ment of a factor of 10. This range has been chosen because the seis-
mic data that we use for evaluation have a standard deviation in the
order of 10−10. The original signal can be seen in Figure 5a, and
the same signal using only 50% of the receivers can be seen in Fig-
ure 5b. We varied the noise standard deviation as mentioned, and we
obtained various values for the reconstruction accuracy measured in
Q as defined in equation 17. Figure 6 shows the reconstruction qual-
ity Q with different initializations of the noise standard deviation.
The log noise standard deviation is plotted for visualization con-

venience. It can be seen that when the noise standard deviation is very
small or very large, the RVM behaves badly. If it is too small, it af-
fects the calculation of the mean and the covariance of the model
parameters because it scales them. If it is too large, the algorithm
stops earlier than it should because it assumes that the remaining error
is explained by the noise. There is a region where it obtains compa-
rable reconstruction accuracy when the noise standard deviation is
from 10−16 to 10−12. Nevertheless, the reconstruction accuracy peaks
at 10−11, and this will be used throughout the experiments.

Parameter settings

Different configurations of the RVM produce different results (Pi-
likos and Faul, 2016). For comparison, we use the best configuration
with regard to the reconstruction accuracy. This configuration is the
RVM using DCT, which benefits from larger patch sizes (Pilikos and
Faul, 2016). To compare with other algorithms that operate on
smaller patch sizes such as BPFA (Pilikos and Faul, 2017), we will
provide results for configurations of 128 × 128 and 8 × 8 sizes. In all
experiments, SPGL1 (van den Berg and Friedlander, 2007) software
with DCT is used. Similarly, for POCS, the MATLAB code (Abma,
2018) was used, and for the RVM, the package from the author’s
website (Tipping, 2018) is ran. Finally, for BPFA, the MATLAB
package (Zhou, 2018) is used.
For POCS and SPGL1, various configurations also provide dif-

ferent levels of reconstruction accuracy. These could be various
parameter initializations, patch sizes, basis functions, and stopping
criteria to name a few. To address this variability in full, experiments
with all possible configurations are necessary. However, this is not

the purpose of the paper. Pilikos and Faul (2017)
explore two key parameters: the patch size and
the stopping criteria. Experiments showed that
POCS with 500 iterations and a patch size of
128 × 128 obtained the best compromise be-
tween time and accuracy. For the stopping cri-
terion of SPGL1, the value of the residual
should have a difference that is much smaller
than the l2 norm of the available data, e.g., be-
tween 10−6kxk2 and 10−9kxk2. The 128 × 128

patch size gives the best performance when fewer
than 85% of the measurements are used, slightly
better than 32 × 32, and much better than the
rest. Note that these parameters were tuned
for time-slice domain reconstruction. For other
scenarios, different parameters might be better
suited. For BPFA, tuning of the parameters was
not necessary due to the adaptability of learning
basis. Interested readers can refer to Pilikos
and Faul (2017) for further information about
initialization.

Figure 8. Mean reconstruction accuracy Q against the percentage
of measurements for 150 seismic sections of time slices.
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Figure 9. A section from a far-offset time slice. Reconstructions with different
algorithms are included using 50% of the receivers. (a) Original, (b) 50% used,
(c) RVM-DCT, 128 × 128, Q ¼ 42.07 db, (d) SPGL1-DCT, 128 × 128, Q ¼ 34.71 db,
(e) POCS, 128 × 128, Q ¼ 24.32 db, and (f) BPFA, 8 × 8, Q ¼ 41.20 db.
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Hybrid approach with learned dictionaries

Using the RVM with DCT on 128 × 128 patches has provided
the best configuration (Pilikos and Faul, 2016). Nevertheless, the
computational time is very long and is orders of magnitude slower
than others as we will discuss later on. Operating on 8 × 8 patches
reduces the computational time but simultaneously reduces the
reconstruction accuracy (Pilikos and Faul, 2016). In addition, the
assumption that DCT provides a sparse representation for every sec-
tion of a time slice is limiting. Here, we use two hybrid approaches,
referred to as RVM-learned and SPGL1-learned, that use more spe-
cialized basis per section. We operate on 8 × 8 patch sizes but using
the learned BPFA basis. We use the BPFA basis that is learned for
each section as a dictionary for the RVM and for SPGL1 and in-
vestigate potential improvements.

TIME-SLICE EXPERIMENTS

By using these algorithmic configurations, we compare against
BPFA, POCS, and SPGL1. We ran experiments on 150 sections of
time slices extracted from the SEAM-II data set close to the source
and far offset (as illustrated in Figure 7), using 8 × 8 and 128 × 128

patch sizes. For the experiments on 8 × 8, we use overlapping
patches on the vertical and horizontal directions to avoid edge
artifacts in reconstructions. To develop an understanding of the
performance, we plot the mean Q with different percentages of
receivers used in Figure 8.
We can see that using 8 × 8 patches, BPFA gives the best perfor-

mance in general. Then, the RVM using the DCT basis follows in
accuracy. After that, SPGL1 performs better from 40% compared to
POCS and POCS performs better than SPGL1 below 40%. The
same behavior is observed when using a 128 × 128 patch size. For
the RVM with 128 × 128 patch size, we ran experiments between
20% and 70% and every 10%. This is due to the fact that each run

takes significant amount of computation as we
will see later on. For POCS and SPGL1, experi-
ments between 5% and 95% every 5% were
undertaken. We can see that all algorithms per-
form much better than their corresponding
8 × 8 configuration as expected. The RVM per-
forms better than the rest, with SPGL1 better than
POCS greater than 35% and POCS better than
SPGL1 below that percentage.
The overall trend is the same for 8 × 8 and

128 × 128 patches. BPFA on 8 × 8 patches ob-
tains very similar reconstruction accuracy as
the RVM of 128 × 128 patch size, albeit slightly
worse. When we use the learned BPFA basis
with the RVM (RVM-learned) and SPGL1
(SPGL1-learned) on 8 × 8 patches, we can see
a great improvement in reconstruction. The
RVM with BPFA basis performs much better
than its corresponding configuration with DCT
on 8 × 8 patches as well as better than the other
algorithms even when they operate on 128 × 128

patches. The same behavior is exhibited
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Figure 10. Reconstruction results using various algorithms and dictionaries of basis for
the section of a far-offset time slice in Figure 9a. (a) BPFA basis, (b) POCS, 8 × 8,
Q ¼ 20.12 db, (c) SPGL1-DCT, 8 × 8, Q ¼ 22.28 db, (d) SPGL1-Learned, 8 × 8,
Q ¼ 35.40 db, (e) RVM-DCT, 8 × 8, Q ¼ 27.45 db, and (f) RVM-learned, 8 × 8,
Q ¼ 38.70 db.

a) b) c)

Figure 11. Mean reconstruction accuracy Q against time using various percentages. (a) Using 30% of the receivers, (b) using 50% of the
receivers, and (c) using 70% of the receivers.
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by SPGL1. Nevertheless, the best is still the RVM with DCT on
128 × 128 patches but with the added expense of longer run times.
A reconstruction of a section from a time slice is included to visu-

alize the differences between algorithms. Figure 9a shows the original
section, and Figure 9b shows the same signal using only 50% of the
receivers randomly. The reconstruction of the RVM using DCT with
128 × 128 patch size is in Figure 9c, the corresponding SPGL1 con-
figuration in Figure 9d and the POCS configuration in Figure 9e. The
BPFA reconstruction on the 8 × 8 size is included in Figure 9f with the
learned dictionary of basis in Figure 10a. We can see that BPFA learns
the orientation of the signal. Figure 10b shows the reconstruction of
POCSwith 8 × 8 patch sizes performing poorly. SPGL1with the DCT
basis on 8 × 8 patches is shown in Figure 10c, and the corresponding
improvement in reconstruction using the learned BPFA basis is illus-
trated in Figure 10d. We repeat the same reconstruction but using the

RVM with DCT on 8 × 8 patches in Figure 10e, and great improve-
ments are shown using the learned BPFA basis in Figure 10f.

Trade-off plots of accuracy and time for all algorithms

Obtaining high reconstruction accuracy is essential but is not the
only criterion for the usage of an algorithm, with computational time
being another. Experiments were performed using the MATLAB
packages mentioned earlier, as single-core jobs on machines with
an Intel Xeon CPU E5-2650 with 2.00 GHz. The mean time for three
different percentages of receivers used (30%, 50%, and 70%) and the
accuracy for all algorithms have been recorded over 150 sections of
time slices.
Figure 11a shows the results when 30% of the receivers are used.

We can clearly see that the configurations of overlapping patches for
POCS, RVM with DCT and SPGL1 with DCT on 8 × 8 patches ob-
tain poor accuracy but are fast. RVM-learned and SPGL1-learned ran
fast and at the same time obtain improved reconstruction accuracy.
POCS and SPGL1 with DCT on 128 × 128 obtain better accuracy
than the 8 × 8 configurations of the same algorithms. BPFA on
8 × 8 obtains the best accuracy out of all the 8 × 8 configurations,
but it is also the slowest of those. RVM with DCT on 128 × 128 ob-
tains the best accuracy of all, but it is the slowest. When using 50% of
the receivers, similar behavior in Figure 11b is obtained. It is worth
noting that the RVM-learned on 8 × 8 patch size obtains better
reconstruction accuracy than POCS and SPGL1-DCT on 128 × 128

and on 8 × 8 for all. Only BPFA and RVM-DCT on 128 × 128 are
better than RVM-learned. Figure 11c exhibits similar behavior when
using 70% of the receivers.
Overall, the best and slowest out of all the algorithms is RVM-

DCTon 128 × 128 patches. Following, BPFA is the best and slowest
on 8 × 8 patches. RVM-learned is in general the second best out of
the 8 × 8 configurations. RVM-learned is orders of magnitude faster
than BPFA and RVM-DCT on 128 × 128 with Q only being worse
by a few db. However, note that RVM-learned first requires BPFA to

Table 1. Mean Q for the far-offset receiver lines’ reconstruc-
tion.

Far offset — Reconstruction accuracy in Q [db]

Decimation rate 30% 50% 70%

RVM-DCT 8 × 8 14.096 24.522 35.092

RVM-learned 8 × 8 16.850 34.354 41.279

POCS 8 × 8 9.917 15.981 21.106

SPGL1-DCT 8 × 8 9.983 20.143 30.492

SPGL1-learned 8 × 8 20.084 32.705 37.095

BPFA 8 × 8 11.545 34.257 42.436

RVM-DCT 128 × 128 23.569 35.460 43.679

POCS 128 × 128 15.841 20.882 27.740

SPGL1-DCT 128 × 128 22.137 31.402 40.975
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Figure 12. The x-t domain reconstruction for receiver lines (far offset) using the RVM. (a) Original, (b) using 30% of the receivers, (c) RVM-
DCT, 128 × 128, Q ¼ 28.6 db, (d) f-k domain of (a), (e) f-k domain of (b), and (f) f-k domain of (c).
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learn the basis functions used. Thus, if these basis functions are not
learned offline, RVM-learned would need to wait for BPFA to finish.

x-t DOMAIN EXPERIMENTS

We have shown earlier that the RVM obtains poor reconstruction
when operating on data with large gaps. However, to process seis-
mic data in the x-t domain entire lines of data points are missing
when one receiver is missing. Considering this issue, we decided to
operate in the time-slice domain, remove receivers corresponding to
data points randomly, reconstruct each section of a time slice, and
then re-sort the data in the x-t domain. This procedure was followed
by Pilikos et al. (2017) as well. We used the 3D synthetic data set
generated numerically using the SEAM-II model as input. We
extracted 500 time slices, and, from each slice, we extracted two
sets of 10 sections of 128 × 128 (the last section
is 128 × 129). The sections were extracted at the
near and far offsets (as shown in Figure 7) to
test the reconstruction with different signal
structures. To perform irregular undersampling,
we created three sampling functions of size
128 × 1281 with different percentages of receiv-
ers kept randomly (30%, 50%, and 70%). These
sampling functions were fixed for all time slices
to match with entire receivers missing as shown
in Figure 4. Experiments in the x-t domain re-
garding the reconstruction accuracy are included
for the RVM with the DCT basis, POCS and
SPGL1 with the DCT basis on 8 × 8 and 128 ×
128 patches. Results are also included for BPFA,
RVM-learned, and SPGL1-learned on 8 × 8

patches.

Comparisons regarding reconstruction
accuracy

We start the comparisons with far-offset receiver
lines. As we have seen in Figure 7, 10 far-offset
sections for all time samples are extracted (5000
sections). Then, we use 30%, 50%, and 70% of
the receivers and after all reconstructions are fin-
ished, we re-sort the data in the x-t domain result-
ing in 128 receiver lines that are far offset. Table 1
summarizes these results where the mean
reconstruction accuracy is shown for three decima-
tion rates. We can see that the RVM using DCTon
the 128 × 128 patch size performs better than all
other algorithms. From the 8 × 8 configurations,
BPFA is the best, in general, algorithm out of
the algorithms with fixed basis. It is also better
compared with the algorithms operating on 128 ×
128 patches (namely, POCS and SPGL1-DCT)
showing the great reconstruction accuracy that is
possible with the learned basis. Using the learned
basis from the BPFA with the RVM and SPGL1,
we can see improvements in accuracy. RVM-
learned improves for all decimation rates when
compared with RVM using DCT basis. It even ob-
tains better results than BPFA for a decimation rate
of 50%. We can also see similar improvements for

SPGL1 when using the learned basis as opposed to fixed DCT. An
example of an x-t domain reconstruction can be seen in Figure 12.
We will now discuss the reconstruction results for receiver lines

that are closer to the source. The data naturally have a more steeply
dipping structure. We provide an example of a line of receivers close
to the source in Figure 13a along with its respective f-k domain in
Figure 13c. Figure 13b shows the same signal but using 50% of the
receivers with its respective f-k domain in Figure 13d. It can be
seen that there is incoherent noise in its f-k domain, and this should
be removed during reconstruction.
Figure 13e shows the reconstruction obtained by the RVM with

DCT on a 128 × 128 patch and using DCT. We can see that at the
first time samples, the reconstruction is unstable. This happens at
the center of the signal, closest to the source. This is due to the steep
dips in the signal and not the lack of data (there is signal in the gray
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Figure 13. (a) Original, (b) 50% of data, (c) f-k domain of (a), (d) f-k domain of (b),
(e) RVM-DCT, 128 × 128, Q ¼ 41.2 db, (f) RVM-learned, 8 × 8, Q ¼ 34.5 db, (g) f-k
domain of (e), and (h) f-k domain of (f).
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areas, albeit a very small amplitude). Essentially, the basis functions
used do not contain characteristics with high enough frequencies to
capture these changes. Nevertheless, the f-k domain in Figure 13g
does not exhibit any aliasing and there is minimal incoherent noise.
The seismic signal at the top and center of the x-t domain is very
steep, with steeper dips causing problems in reconstruction. This is
because we used algorithms on 128 × 128 patch sizes and the basis
functions did not capture the fine details necessary to represent the
signal close to the source and at earlier times.
Operating on smaller patch sizes could help in which curved

events will appear as linear events (Naghizadeh and Sacchi, 2007).
Thus, we repeat the experiment using RVM-learned. The
reconstruction can be seen in Figure 13f and its respective f-k do-
main in Figure 13h. By using the patch size of 8 × 8, we were able to
obtain reconstructions without any distortions around the source lo-
cation. Nevertheless, the overall reconstruction quality is better when
using the 128 × 128 patch sizes with the exception of the signal close
to the source and at earlier times. Thus, we need to separate the
seismic signals closer to the source in regions where different algo-
rithms can operate. For example, for the signal close to the source and

at earlier times, an algorithm that operates on 8 × 8 patches should be
used and then another algorithm on 128 × 128 can reconstruct the
rest of the regions.
To identify which algorithm works best in each region, we calcu-

late the mean reconstruction accuracy Q over all 128 receiver lines
for the three decimation rates in three different regions. We can see
that the top center of the signal can be approximately obtained from
the first 30 time samples (0.18/0.006 s). Table 2 shows the mean Q
over all of the receiver lines for only the first 30 samples. Negative
values for Q reflect the poor reconstruction accuracy. The ratio be-
tween the norm of the original and the norm of the difference between
the original and the reconstruction gives a fraction resulting in a
negative exponent (refer to the definition of Q in equation 17).
We can see that the RVM using the DCT basis on 8 × 8 patches gives
the best reconstruction accuracy. Using the learned basis from BPFA
does not improve the RVM’s performance because the basis learned
do not capture the characteristics in this region. This is evident from
the performance of BPFA as well, which is also poor. The same ap-
plies for SPGL1’s performance using the learned basis on 8 × 8

patches. Using the DCT basis by SPGL1 on 8 × 8 patches gives
good results but not as good as the RVM. The POCS results on 8 × 8

patches are generally poor but still better than the POCS reconstruc-
tions on 128 × 128 because the larger patch size does not help in this
region. The same applies to SPGL1 and RVM with DCT on 128 ×
128 with lowerQ compared with the respective 8 × 8 configurations.
We continue the evaluation in other regions as well. The second

region is from 31 to 200 time samples, which contains a mixture of
steep and curved events. The results are summarized in Table 3. We
can see that the RVM using the DCT basis and operating on 128 ×
128 obtains the best reconstruction accuracy in two categories of
percentages and SPGL1 using the DCT basis on 128 × 128 is only
slightly better when using 30% of receivers. In general, the configu-
rations operating on 128 × 128 are now better than those operating in
8 × 8. In addition, the dictionary of learned basis improves the
reconstruction of the RVM and SPGL1 because BPFA is able to learn
useful basis. The only exception is when using 30% of receivers. The
third region is from 201 to 500 time samples, and the results are sum-
marized in Table 4. The RVM using DCT on 128 × 128 obtains the
best results for two different decimation rates, and BPFA on 8 × 8

Table 3. Mean Q for the x-t domain for close to the source
(31–200 time samples).

Close to source (31–200 samples) — Reconstruction accuracy in
Q [db]

Decimation rate 30% 50% 70%

RVM-DCT 8 × 8 4.204 11.080 22.698

RVM-learned 8 × 8 −0.446 14.535 28.031

POCS 8 × 8 4.6786 8.3327 12.220

SPGL1-DCT 8 × 8 3.523 9.772 20.213

SPGL1-learned 8 × 8 2.315 18.499 28.903

BPFA 8 × 8 −10.169 19.977 33.752

RVM-DCT 128 × 128 6.597 28.475 44.550

POCS 128 × 128 −1.326 19.315 28.721

SPGL1-DCT 128 × 128 6.604 16.145 33.462

Table 4. Mean Q for the x-t domain for close to source
(201–500 time samples).

Close to source (201–500 samples) — Reconstruction accuracy in
Q [db]

Decimation rate 30% 50% 70%

RVM-DCT 8 × 8 7.695 17.773 28.899

RVM-learned 8 × 8 6.828 32.634 42.085

POCS 8 × 8 7.006 11.513 15.904

SPGL1-DCT 8 × 8 5.803 14.726 24.972

SPGL1-learned 8 × 8 11.900 28.508 35.667

BPFA 8 × 8 17.606 36.921 44.748

RVM-DCT 128 × 128 21.361 36.017 45.782

POCS 128 × 128 −3.197 23.568 29.128

SPGL1-DCT 128 × 128 16.825 29.574 39.459

Table 2. Mean Q for the x-t domain for close to source (1–30
time samples).

Close to source (1–30 samples) — Reconstruction accuracy in Q
[db]

Decimation rate 30% 50% 70%

RVM-DCT 8 × 8 6.033 15.102 25.450

RVM-learned 8 × 8 0.720 9.009 19.950

POCS 8 × 8 5.046 8.936 12.662

SPGL1-DCT 8 × 8 4.832 13.257 23.347

SPGL1-learned 8 × 8 3.032 12.108 23.828

BPFA 8 × 8 −7.673 6.153 19.396

RVM-DCT 128 × 128 −5.936 6.543 17.404

POCS 128 × 128 −10.005 −1.953 6.109

SPGL1-DCT 128 × 128 −1.780 6.610 20.992
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performs better when using 50% of receivers. In addition, the learned
basis improve the RVM and SPGL1.

Combining configurations for better accuracy

Using the RVM with DCT on 8 × 8 at the signal close to the
source and at earlier times provides higher reconstruction accuracy
with no distortions. For the rest of the regions, the RVM with DCT
on 128 × 128 provides the best accuracy overall. This combination
provides the best accuracy and should be used if this is the require-
ment. If a faster computational time is needed, another combination
might be more beneficial.

UNCERTAINTY QUANTIFICATION FOR SOURCE/
RECEIVER CONFIGURATIONS

The reconstruction accuracy of algorithms varies depending on the
seismic data used. Thus, a metric that quantifies the uncertainty of the
model for each prediction would be advantageous.
Work toward uncertainty quantification has been
undertaken by Pilikos and Philip (2018) and Pili-
kos and Faul (2019). If the best possible uncer-
tainty quantification is required, BPFA has been
shown by Pilikos and Faul (2019) to obtain better
results than RVM. Furthermore, the predictive
variance of the RVM could be problematic if
localized basis functions are used, resulting in the
degenerate case (Rasmussen and Quiñonero-Can-
dela, 2005). Here, we use the RVM with DCT to
mitigate this as was done by Pilikos and Faul
(2019). Ideally, the total uncertainty in the predic-
tions should be small when the reconstruction ac-
curacy is high and vice versa. To quantify the total
uncertainty, we use the predictive variance of the
RVM obtained per receiver, as defined in equa-
tion 16. Then, we take the sum of all the predictive
variances for all receivers.
In this section, we illustrate three different con-

figurations of receivers with the corresponding
RVM reconstruction, error, and uncertainty map.
The configurations vary with respect to the percent-
age of receivers used (30%, 50%, and 70%). In
addition, different seeds are used for random place-
ment of receivers. Figure 14a shows the first
configuration using 70% of the receivers. Fig-
ure 14b includes the RVM reconstruction with
Q ¼ 44.04 db. The uncertainty map is included
in Figure 14c with the total uncertainty equal to
3.84 × 10−17. Figure 14d includes the respective
reconstruction error. Figure 14e shows the second
configuration with 50% of the receivers used. Fig-
ure 14f includes the respective RVM reconstruc-
tion with Q ¼ 32.93 db. The uncertainty map is
included in Figure 15a with the total uncertainty
equal to 4.73 × 10−17. The respective reconstruc-
tion error is shown in Figure 15b. Finally, the third
configuration using 30% of the receivers is shown
in Figure 15c. The respective RVM reconstruction
is included in Figure 15d with Q ¼ 24.79 db. The

uncertainty map is shown in Figure 15ewith the total uncertainty equal
to 5.42 × 10−17.
These results show that better accuracy corresponds to lower total

uncertainty and vice versa. Thus, the predictive variance is able to
capture the quality of reconstruction. Further investigation is neces-
sary to understand when the total uncertainty is low enough to enable
the respective reconstructions to be suitable for later workflows. Ex-
tensions of the RVM’s predictive variance could also be further in-
vestigated (Rasmussen and Quiñonero-Candela, 2005; Faul and
Pilikos, 2016).

FIELD DATA SET EXPERIMENT

We use the Parihaka data set to test the RVM on field data, a 3D
seismic image provided by New Zealand Petroleum and Minerals
and obtained from the SEG wiki page (SEG, 2018b). All data from
the Parihaka data set are prestack time migrated. Figure 16a shows
a section from the volume. We removed 30% of the data points
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Figure 14. Different source/receiver configurations and uncertainty quantification.
(a) First configuration, (b) first RVM reconstruction, Q ¼ 44.04 db, (c) first map with
uncertainty ¼ 3.84 × 10−17, (d) first reconstruction error, (e) second configuration, and
(f) second RVM reconstruction, Q ¼ 32.93 db.
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Figure 15. Different source/receiver configurations and uncertainty quantification.
(a) Second map, with uncertainty¼ 4.73 × 10−17, (b) second reconstruction error, (c) third
configuration, (d) third RVM reconstruction, Q ¼ 24.79 db, (e) third map with uncer-
tainty ¼ 5.42 × 10−17, and (f) third reconstruction error.
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randomly as shown in Figure 16b and reconstructed it using the
RVM as seen in Figure 16c. The reconstruction error can be seen
in Figure 16d with small differences.

DISCUSSION

Using the selected configurations, we compared the RVM on time
slices against SPGL1 and POCS. The RVM obtained the best
reconstruction accuracy, but it also took the longest to run. Using
a patch size of 8 × 8 improved the computational time, but the
reconstruction accuracy was also degraded. To avoid degradation,
we used a hybrid approach, referred to as RVM-learned. This algo-
rithm uses the RVM with a dictionary of basis functions learned by
another method called BPFA. By exploring all possible spaces, BPFA
is able to learn a sparse representation that captures the signal varia-
tions of the seismic data. To maintain high reconstruction accuracy
and practical computational time, we process 3D seismic data in
two dimensions over time resulting in a pseudo 3D seismic data
reconstruction. Working directly in higher dimensions such as 3D
or 5D (prestack) data is also possible in theory, but the computational
time would be orders of magnitude larger.
We experimented with two different types of receiver lines, those

that pass close to the source and those at a far offset as in Figure 7.
From the experiments of receiver lines that are far offset, the RVM
with DCT on 128 × 128 patches obtained the best reconstruction
accuracy for all decimation rates of receivers used. Using RVM-
learned on 8 × 8 patches improved its performance compared to
the RVM using DCT on 8 × 8 patches. For the receiver lines close
to the source, the reconstruction is more challenging due to the
steeper dips at earlier times. All algorithms that operate on 128 ×
128 patches had problems reconstructing the events at earlier times
close to the source due to the very rapid variability. The basis func-
tions used on 128 × 128 patches did not contain such localized fea-
tures. However, the algorithms that operated on 8 × 8 patches
reconstructed the region without problems due to the use of smaller
basis functions that can capture finer, localized details.

It has been shown that the reconstruction accuracy of algorithms is
different when operating on different regions. Thus, it is essential to
obtain a level of confidence for the predictions. We have illustrated
that the RVM’s predictive variance can be used to quantify uncertainty
and investigated source/receiver configurations. When the total uncer-
tainty was low, the reconstruction accuracy was high and vice versa.
This could be used for the design of randomized acquisition patterns.

CONCLUSION

Using seismic CS, it is possible to reconstruct undersampled seis-
mic data with high accuracy. A probabilistic data-driven model,
called RVM, is suitable for seismic CS because it is composed
of a linear combination of basis functions with only a few nonzero
coefficients. This results in a sparse model, an assumption necessary
for CS to work. By using this model, a predictive distribution is
created and used for the prediction of missing receivers as well
as uncertainty quantification. In addition, a hybrid approach is used
that uses learned dictionaries to improve the reconstruction accu-
racy. Random sampling and no large gaps in the data are an essential
component of this method, with experiments showing that the RVM
obtains state-of-the-art data reconstruction without aliasing. Fur-
thermore, it is a useful tool for estimating levels of confidence
in the design of a seismic survey by quantifying uncertainty. This
uncertainty could be used to evaluate different source/receiver
configurations and could guide seismic survey design.
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