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Abstract—Compressive Sensing for seismic surveys uses sparse
signal assumptions to reconstruct the reflected wave field. In the
past, most methods utilised dictionaries of fixed basis functions
for sparse representation. Recently, algorithms that learn the
basis from data are being used with better reconstruction
accuracy but longer computational times. One of these is the
Beta Process Factor Analysis (BPFA). We propose faster in-
ference for BPFA using Gibbs sampling analysis and illustrate
that the reduced computational time does not severely affect
the reconstruction accuracy with no aliasing in the frequency
spectrum. In addition, associating each prediction with a level
of uncertainty is essential but very challenging. Using the Gibbs
samples, we create uncertainty maps that are highly correlated
with the reconstruction error and are not affected by the
faster BPFA inference. Experiments on synthetic and field data
illustrate the effectiveness of our proposed methodology for both
reconstruction and uncertainty quantification in seismic surveys.

Index Terms—seismic compressive sensing, dictionary learning,
sparse representation, Bayesian machine learning

I. INTRODUCTION

Seismic surveys involve an artificial source at the Earth’s
surface creating a wave field that is reflected by changes in
impedance. Receivers at the surface are placed in a certain
spatial arrangement and record the reflected wave field. This
has the effect of sampling an analogue into a digital signal
and care is needed to avoid aliasing. In addition, restrictions
on the surface, malfunction of receivers or other environmental
reasons can cause gaps in the acquired seismic data.

Compressive Sensing (CS) [1], [2] is a framework that
tackles missing data using signal reconstruction algorithms.
An important assumption for CS is that the signal of interest
is sparse [3], [4] in the acquired domain or in some basis.
Recently, there has been a great interest in CS methods [5]-
[7]. For seismic CS, Fourier [8], discrete cosine [9], curvelet
[10], Radon [11] or focal dictionaries [12] are used for sparse
representation. Algorithms that use dictionaries of bases such
as Projection Onto Convex Sets (POCS) [13], [14], Spectral
Projected Gradient for L1 (SPGL1) [15] and the Relevance
Vector Machine (RVM) [16] are limited by the pre-selection
of the basis. To overcome this limitation, dictionary learning
methods [17]-[21] have been proposed to learn a sparse
representation.

However, most algorithms are ad hoc and their only aim is to
fill in the gaps or denoise a signal with their predictions. They

do not provide any degree of uncertainty or confidence for
the predicted receivers’ values. From the methods mentioned
earlier, the RVM is able to provide uncertainty information [9]
due to the fact that is built around the Bayesian framework for
CS [22]-[25]. Another Bayesian technique, the Beta Process
Factor Analysis (BPFA) [26] has been proposed for seismic CS
and denoising [27]. It is able to obtain state-of-the-art results
by learning dictionaries of bases without any aliasing in the
Frequency-Wavenumber (FK) domain [28]. Nevertheless, it
has been shown that its computational time is much slower
compared to others in the literature [27]. Since it is also
built around the Bayesian framework, it is possible to create
uncertainty maps for its predictions.

In this paper, our contributions are the following: we pro-
pose faster BPFA inference using Gibbs sampling analysis.
We apply this for seismic Compressive Sensing (CS) and un-
certainty quantification. Using this, we create state-of-the-art
uncertainty maps with high correlation between uncertainties
and reconstruction error and no aliasing in the FK domain. We
compare against other techniques in the literature obtaining
more informative uncertainty maps. We also investigate the
effect that the reduced computational time has on accuracy and
uncertainty. All these are applied on synthetic data provided
by BP and field data provided by New Zealand Petroleum
and Minerals (NZPM). The rest of the paper is organised as
follows: First we introduce the BPFA model, then we describe
how we can obtain uncertainty maps and after that we describe
the Gibbs sampling analysis using various initialisations. Then,
the fast BPFA inference is described along with results and
comparisons on various data sets.

II. THE BPFA MODEL

BPFA is a hierarchical Bayesian model that constitutes a
finite approximation of the Indian Buffet Process (IBP) [29]. It
is a truncated beta-Bernoulli process with a fixed, large number
of features, L, and shrinks if there is redundancy. To introduce
this model, we assume that a data matrix X is generated by an
underlying process with its columns x(i) ∈ RK , i = 1, ..., T .
Each x(i) can be considered a patch from a signal and is
assumed to be generated by,

x(i) = Dw(i) + ε(i), (1)



where D ∈ RK×L denotes the dictionary of bases. Prior
distributions are defined for each model variable. We start with
the columns {dl}Ll=1 of D which are modelled by

p(dl) = N (dl; 0,K−1IK) (2)

where IK ∈ RK×K is the identity matrix. Then, we explicitly
separate the value of a coefficient in w(i) from the fact whether
it is non-zero or zero. In particular, we introduce z(i) and s(i),

w(i) = z(i) � s(i), (3)

with � the elementwise vector product, z(i) ∈ {0, 1}L
signifies whether a basis is used and s(i) ∈ RL are the values
of the coefficients. The prior distribution for z(i) is given by,

p(z(i)) =

L∏
l=1

Bernoulli(z(i)l ;πl), (4)

where πl is the probability that the l-th basis is used when
x(i) is generated. This means that the l-th component of z(i)

is generated by a Bernoulli distribution with probability πl.
The probabilities π = [π1, ..., πL]T themselves are a priori
distributed by a hyper-prior defined by,

p(π) =

L∏
l=1

Beta(πl; a/L, b(L− 1)/L), (5)

where a, b are parameters characterising the Beta distribution.
The latent variable, s(i), on the other hand models the value

of the coefficients and is assumed to be generated by,

p(s(i)) = N (s(i); 0, γ−1s IL), (6)

where IL is the L×L identity matrix and γs is modelled by a
Gamma distribution. The noise in equation 1 is also modelled
with a normal distribution. Using the above, we can obtain a
joint distribution for the BPFA model over all the available
data. This is given by,

(7)P (D,Z,S,π, γε, γs,Y,∆) =

T∏
i=1

N (y(i); ∆(i)D(s(i)

� z(i)), γ−1ε I‖∆(i)‖0)N (s(i); 0, γ−1s IL)

L∏
l=1

N (dl; 0,K−1IK)Beta(πl; a0, b0)
T∏
i=1

L∏
l=1

Bernoulli(z(i)l ;πl)

Γ(γs; c0, d0)Γ(γε; e0, f0).

where we define Y = [y(1),y(2), ...,y(T )] and ∆ =
[∆(1)∆(2), ...,∆(T )] the available training data and the sam-
pling matrix per patch respectively. Z = [z(1), z(2), ..., z(T )],
S = [s(1), s(2), ..., s(T )] are the respective latent variables.

Posterior distributions for each variable are obtained using
the Bayes’ rule. Using these, it is possible to create an
algorithm for inference by estimating the model’s variables
considering the rest fixed for a given iteration (with the
posterior conditional distributions). This is called a Gibbs
iteration and the entire procedure of obtaining an estimate for
one variable given the others is called Gibbs sampling. Further
information can be found in the Appendix of [26].

III. PRODUCING UNCERTAINTY MAPS WITH BPFA

In order to obtain training data for the BPFA, we split a
signal into smaller overlapping patches, x(i), and use them in
a sequential manner. We chose a patch size of 8× 8 in a grid
of 128× 128 receivers. First, we extract all 256 patches with
128
8 = 16 along the vertical axis and 128

8 = 16 patches along
the horizontal axis. This is the first Gibbs round and each
round can have many Gibbs iterations. In the second round,
we shift the starting point of extraction by one receiver down
which results in the extraction of 240 patches. This continues
for all receiver locations in a given patch resulting in 64 such
rounds. We use the current extracted training data to perform
Gibbs sampling over the unknown variables. More patches are
added sequentially until finally all patches are used.

At the last Gibbs iteration, each variable is drawn from its
corresponding distribution and used to calculate the receivers’
value for all patches. Thus, each value is inferred various times
since it is contained in multiple patches (at most 64). The
mean (final prediction) of each receiver’s value is obtained by
averaging over all its estimated values. The uncertainty of the
prediction at a receiver’s location is obtained by calculating
the variance of all its estimated values. [30] contains more
information regarding the patch processing procedure.

IV. PROPOSED ANALYSIS OF THE GIBBS SAMPLER

Before starting the inference for the Gibbs sampling, we
need to initialise all unknown variables. By doing so, we place
the sampler in a location at the variable’s space. One of the
most important variables in the BPFA model is D as defined
in equation 1 and we will investigate its initialisation. We
will evaluate six different options. The first three are popular
dictionaries of basis functions: the Discrete Cosine Transform
(DCT), the Haar wavelets transform and the radial (Gaussian)
basis functions. Another option for initialisation is the Singular
Value Decomposition (SVD) which decomposes the available
data into singular vectors that capture the largest variances in
the data. A further option is a dictionary that was inferred
by using 7 680 000 bases, from 30 000 seismic signals with
256 bases each, learned during previous reconstructions [28].
Finally, random initialisation is also investigated.

We would like to investigate how the Gibbs samplers are
affected and we thus track how the reconstruction accuracy
changes over time using Q defined by

Q = 10 log
‖x‖22
‖x− x̂‖22

, (8)

where x is the original signal and x̂ is the current recon-
struction. On the other hand, the uncertainty maps are judged
by their correlation with the reconstruction error. A suitable
metric for this is the Spearman’s correlation coefficient, S,
defined by,

S =

∑n
i=1(errori − µerror)(unceri − µuncer)√∑n

i=1(errori − µerror)2
√∑n

i=1(unceri − µuncer)2
(9)

where n are the number of receiver locations used, {errori}ni=1

and {unceri}ni=1 are the reconstruction error and uncertainty
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Fig. 1: A time slice illustration - Extraction of 10 sections.

at the respective receiver locations. µerror and µuncer are their
respective means. Note that each variable is ranked from
lowest to largest in magnitude and S ranges from −1 to +1.
Positive correlation means that as one grows or decreases so
does the other. We would like a value close to +1.

To test our proposed system, we extracted seismic data from
a 3D synthetic data set which was generated numerically using
the SEAM-II [31] model as input. The modelling was carried
out by BP in Houston. We process seismic data in sections
of time slices as it was done in [28]. Figure 1 shows a time
slice where all receivers in a grid are used at a particular
time step. Then, from a time slice, ten sections are extracted
of 128 × 128 receivers in order to operate on. The spatial
sampling is at 6.25 metres and the time sampling is at 0.006
seconds. To test aliasing, the x-t domain is transformed into
its Frequency-Wavenumber (FK) domain. The x-t domain uses
a receiver line with all time steps as it can be seen in Figure
3(a). All experiments were performed as single-core jobs on
machines with Intel(R) Xeon(R) CPU E5-2650 with 2.00GHz
using the software package from [32].

To analyse the Gibbs samplers, we used 21 different seismic
signals and plotted the mean Q and mean S at each time for
each different initialisation of basis. Figure 2(a) shows the
average Q against the average time. All Gibbs samplers exhibit
similar behaviour. At the beginning of the inference, Q rapidly
increases with the extraction of patches. Every 8 Gibbs rounds,
there is a rapid change in Q when a horizontal shift in the
extraction of patches occurs. It increases Q at the start of the
inference but decreases it afterwards. This is because more
training data are being used, adjusting the model. When 63
Gibbs rounds are completed (with one iteration per round),
the 64th starts (with 100 iterations) with all available patches
as training data. This results in a better estimation and Q
gradually increases. From the various initialisations, the Gibbs
sampler with SVD performs much better. The inferred dictio-
nary from 30000 sections peaks near the former’s performance.
The three dictionaries of basis functions perform similarly, but
the Gaussian basis functions peak slightly lower. Finally, the
random initialisation performs the worst.

Figure 2(b) shows the average S against the average time.
There is a rapid change in S every 8 Gibbs rounds but much
smaller compared to Q. In addition, S does not worsen with
time and slightly improves. The random initialisation provides
the worst uncertainty maps compared to the others.
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Fig. 2: Mean reconstruction quality (a) and mean Spearman’s
correlation coefficient (b) against computational time.
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Fig. 3: Original (a), using 50% (b), the BPFA reconstruction
(c), the error (d), the FK domain of original (e), the FK domain
for 50% (f) and the FK domain of reconstruction (g).



V. FAST BPFA INFERENCE

BPFA is orders of magnitude slower than others in the litera-
ture [27]. If we consider that there are potentially thousands of
instances of the BPFA that need to be executed in a complete
seismic signal, reducing the processing time can have great
computational improvements in general.

By using the insight from the Gibbs sampling analysis,
we can speed up the BPFA procedure depending on the
requirements of reconstruction. From Figure 2, we can see
that Q does not improve significantly at the last Gibbs round.
Thus, not all 100 iterations are necessary. In addition, S is
not affected significantly by increasing the iterations. In the
following experiment, we perform slice processing and then
re-sort in the x-t domain. We use all 64 Gibbs rounds to
reach high Q but stop the iterations at 50 with SVD as
initialisation since it obtains the best Q. This allows a speed
up of approximately 120 seconds (or 2 minutes) per section
and only approximately 0.5 db loss with S only 10−5 smaller.
We are interested in the reconstruction of entire seismic signals
which are composed of numerous sections. In particular, in our
experiment we use 5000 sections of time slices (10 sections per
time slice with 500 time steps) which results in 10000 minutes
or 166.6 hours of speed up. Figure 3 shows a receiver line of a
seismic signal in the x-t domain. We used 50% of the receivers
and reconstructed the signal with no signs of aliasing in the
FK domain illustrating that the significant speed up does not
compromise the quality of the reconstruction.

VI. COMPARISONS FOR UNCERTAINTY MAPS

We wanted to test our system against others in the literature
that produce uncertainty maps. The Relevance Vector Machine
(RVM) is one such algorithm that was applied to seismic
data and produced uncertainty maps [9]. It was found that
the predictive variance of the RVM does not always provide
accurate uncertainties [33] and thus an improvement was
proposed using the expected change in the model’s likelihood
[9]. We used 50% of the receivers from 1000 sections of time
slices, reconstructed the signals and produced respective uncer-
tainty maps. Then, we calculated the Spearman’s correlation
coefficient, S, for our system, the RVM’s predictive variance
and its extension [9]. We found that our system using the fast
BPFA obtained an average S= +0.5248, the RVM’s predictive
variance obtained an average S= +0.2109 and its extension an
average S= +0.3775. This illustrates that our system produces
more accurate uncertainty maps even with the fast inference
proposal. [9] contains illustrative uncertainty maps for the
RVM and its extension. A more thorough comparison with
more percentages and analysis is not included for brevity.

VII. FIELD DATA SET

We use a field data set called Parihaka which is a 3D
seismic image provided for use by New Zealand Petroleum and
Minerals (NZPM) obtained from the SEG wiki website [34].
Figure 4 shows a section of this data set with its respective
reconstruction and the learned dictionary of bases. It can be
seen that the reconstruction from 50% of receivers matches
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Fig. 4: Section from field data with original (a), using 50% of
receivers (b), BPFA reconstruction with Q = 26.1 db (c), the
learned dictionary of bases (d) the error (e) and the uncertainty
map with S = +0.82 (f). Bright colours mean high error and
uncertainty in (e) and (f) respectively.

well with the original signal with Q = 26.1 db using the
learned bases. Furthermore, we can see that the uncertainty
map produced by the BPFA has high correlation with the
reconstruction error (S = +0.82). Using the uncertainty maps,
under certain conditions, it could be possible to place receivers
where there is high uncertainty and minimise reconstruction
error in future surveys.

VIII. CONCLUSION

Efficient seismic Compressive Sensing (CS) techniques are
crucial in seismic surveys. Fast and accurate reconstructions
without any aliasing along with uncertainty information are
desirable. These allow the utilisation of seismic images for
further processing. We proposed a fast BPFA inference pro-
cedure using Gibbs sampling analysis. We illustrated that
shorter computational time does not signifcantly compromise
the reconstruction accuracy nor the quality of the uncertainty
maps. In addition, thousands of sections were reconstructed



using the fast BPFA inference without any aliasing in the FK
domain and at the same time saving hundreds of hours of
computation. Furthermore, a comprehensive study of the Gibbs
sampler initialisation showed that the SVD of the available
data provides the best starting place in the basis space. This
allows the learning of dictionaries of bases for sparse rep-
resentation with higher reconstruction accuracy. Initialisation
with an inferred dictionary of bases trained on thousands of
sections also provided improved performance.

The importance of uncertainty quantification in data acqui-
sition is also growing. We utilised the probabilistic nature of
the BPFA and produced accurate uncertainty maps having high
correlation with their respective reconstruction error. We com-
pared this against others in the literature and obtained more
informative uncertainty maps for the BPFA model illustrating
its suitability for both reconstruction accuracy and uncertainty
quantification in seismic surveys.
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