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Abstract—Seismic data acquisition in remote locations in-
volves sampling using regular grids of receivers in a field.
Extracting the maximum possible information from fewer
measurements is cost-effective and often necessary due to
malfunctions or terrain limitations. Compressive Sensing (CS)
is an emerging framework that allows reconstruction of sparse
signals from fewer measurements than conventional sampling
rates. In seismic CS, the utilization of sparse solvers has
proven to be successful, however, algorithms lack predictive
uncertainties. We apply the Relevance Vector Machine (RVM)
to seismic CS and propose a novel utilization of multi-scale
dictionaries of basis functions that capture different variations
in the data. Furthermore, we propose the use of a new
predictive uncertainty measure using the information from the
neighbours of each estimation to produce accurate uncertainty
maps. We apply the RVM to different seismic signals and obtain
state-of-the-art reconstruction accuracy. Using the RVM and
its predictive uncertainty map, it is possible to quantify risk
associated with seismic data acquisition and at the same time
guide future survey design.

Keywords-Compressive Sensing; Bayesian Inference; Seismic
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I. INTRODUCTION

Seismic surveys are used in order to visualize the interior
structure of our planet. The process uses an artificial source
(shot) of body waves at the surface and reflections from deep
impedance changes at rock layer boundaries are recorded
by a grid of surface receivers. Efficient data acquisition
would utilize as few shots and/or receivers as possible
commensurate with adequate signal quality. Frequently,
surface infrastructure can lead to gaps in the placement
of shots and/or receivers leading to undesirable gaps in
subsurface coverage. CS allows perfect reconstruction from
fewer measurements than those conventionally used by the
Shannon/Nyquist rate. The assumption for CS to work is that
the signal has to be sparse either in the acquisition domain
or sparse in a specified transform. Modelling a signal as a
linear combination of basis functions [1] is a popular choice.
Examples of dictionaries in the seismic CS literature include
the Fourier Transform [2], the Radon Transform [3] or the
Curvelet Transform [4] used in conjunction with a sparse

solver. Projection Onto Convex Sets (POCS) [5] utilizes the
Fourier Transform to sparsify the available data and uses
hard or soft thresholding [6] to choose the essential basis
functions. Iterative-Reweighted Least Squares was proposed
[7] to suppress the artifacts in the Fourier domain. The
Iterative Soft Thresholding (IST) and the Curvelet Trans-
form were used successfully for seismic CS [4]. A faster
version of IST was proposed [8], namely the Fast Iterative
Soft Thresholding Algorithm (FISTA), and then applied to
seismic data [9]. Spectral Projected Gradient for L1 (SPGL1)
[10] was proposed with great reconstruction accuracy and is
still considered state-of-the-art in seismic CS [11]. Neverthe-
less, the speed of convergence is important and thus a faster
gradient projection method based on curvelets was proposed
recently [11] with comparative reconstruction accuracy but
faster computational time. Tensor Completion algorithms
[12] were also proposed to solve this issue and to scale
to larger dimensions. A recent comparison of 5D solvers
has shown that POCS preserves better the amplitudes in the
signals compared to other algorithms in the literature [13].

A solver in this context should be able to use arbitrary
dictionaries of basis functions, either analytic or learned
from seismic data [14]. The utilization of basis functions
should ideally be multi-scale [14] in order to capture
different variations in the data and it should provide a
predictive uncertainty in its estimations. With this, it would
be possible to trust areas or even re-shoot in uncertain
regions if necessary. In this paper, we apply the RVM [15]
to seismic CS. We extend its capabilities by exploiting the
probabilistic nature of the algorithm through the use of a
recent predictive uncertainty measure. We create a network
of RVMs that refine their estimations and at each stage
different dictionaries of basis functions could be used. We
apply the RVM on various seismic signals and compare it
with POCS and SPGL1. We show that the RVM outper-
forms POCS in accuracy and the RVM with appropriate
basis functions matches the performance of the SPGL1
providing state-of-the-art reconstruction. We also provide an
exhaustive analysis of the trade-off between accuracy and



computational time and show how the proposed predictive
uncertainty measure can be used for seismic survey design.

The paper is organized as follows. Firstly in section
II, an overview of the CS theory is given in a Bayesian
framework. Then, in section III, the predictive uncertainty
measure is described. In section IV, the typical seismic
survey setup is discussed along with experiments on different
seismic signals. A trade-off analysis of computational time
and reconstruction accuracy is provided, comparisons with
POCS and SPGL1 are shown and illustrations of uncertainty
maps are included. Conclusions are made in section V.

II. BAYESIAN CS THEORY

CS provides perfect reconstruction of sparse signals using
unconventional sampling schemes under certain assump-
tions. Let w ∈ RN be the signal in the sparse domain.
The matrix Ψ ∈ RN×N transforms the signal from the
sparse domain to the acquisition domain and the goal is
reconstruction using M measurements where M � N .
These measurements are described by:

y = ΩΨw, (1)

where y ∈ RM are the measured data and Ω ∈ RM×N is
the sensing matrix. The i-th column of Ψ ∈ RN×N is the
i-th basis element ψi ∈ RN evaluated at all N points of
interest. There is a question as to what Ω should be, with
the Gaussian matrix being popular. However, this completely
disregards limitations of the real world where the choice
of sampling and thus sensing method might be severely
restricted. To this end, Ω is the zero matrix, apart from one
non-zero entry equal to 1 per row. Thus, a measurement is
either taken or not. With this in mind, we simplify:

y = Φw, (2)

where Φ = ΩΨ. The i-th column of Φ is the i-th basis
element evaluated at only M points, denoted by φi ∈ RM .
One solution for the under-determined system of equations
in (2) is to set a sparsity constraint. This can be achieved
by minimizing the l0 norm of w which represents the
number of non-zero elements of the signal. However, this is
intractable in general [16]. The breakthrough was made by
a series of papers ([17], [18]) arriving at an approximation
by minimizing the l1 norm.

Sparse Bayesian learning was introduced in CS [19] which
treats the problem as regression. The training data are the
measurements and the model’s coefficients are included in
the sparse signal:

f(xi; w) = wTψ(xi) + εi, (3)

where εi represents noise and ψ(xi) ∈ RN contains the
values of all N basis functions at point xi. After training
the model, the values of an unknown data point, x∗, can be
inferred by:

f(x∗; w) = wTψ(x∗). (4)

Therefore, the objective is to find w that fits the training
data best. In order to obtain predictive uncertainties, a
probabilistic framework through the RVM [20] [21] is used.
A zero mean Gaussian prior distribution is chosen to satisfy
the sparsity condition of the coefficients, defined by:

p(w|α) =

N∏
i=1

N (wi|0, α−1i ), (5)

where α = (α1, ..., αN ) represent the inverse variance
for each coefficient’s distribution. The measurements are
assumed to have additive Gaussian noise and therefore the
likelihood model is a Gaussian distribution defined by:

p(y|w, σ2) =

M∏
i=1

1√
2πσ2

e

(
− (yi−f(xi;w))2

2σ2

)
. (6)

The posterior distribution of w is given by Bayes’ rule:

p(w|y,α, σ2) =
p(y|w, σ2)p(w|α)

p(y|α, σ2)
. (7)

This is a multivariate Gaussian distribution with posterior
covariance Σ ∈ RN×N and mean µ ∈ RN :

Σ = (σ−2ΦTΦ + A)−1, (8)

µ = σ−2ΣΦTy, (9)

where A ∈ RN×N is a diagonal matrix with the hyper-
parameters α on the diagonal. The RVM obtains the opti-
mum α and σ2 is either fixed at an assumed level or inferred
from the data. This is done by maximizing the marginal log-
likelihood for α and σ2 [20]. The predictive mean at an
unknown data point, x∗, can be inferred by:

f(x∗) = ψ(x∗)
Tµ. (10)

The predictive variance is given by:

σ2
∗ = σ2 +ψ(x∗)

TΣψ(x∗), (11)

where σ2 controls the assumed noise level.

III. PREDICTIVE UNCERTAINTY MEASURE

It has been noted [22] that the predictive variance depends
on the choice of basis functions. It is common to choose
basis functions which decay quickly or basis functions with
finite support. Therefore, all elements of ψ(x∗) could be
small or zero. In this case, f(x∗) and σ2

∗ are close to zero,
making the predictive distribution meaningless. To resolve
this issue, we utilize a different measure that uses the change
in the logarithm of the marginal likelihood when including
a data point, x∗, in the model. The change is given by [1]:

∆L = log

[
1√

2πσ∗
exp

(
− (f(x∗)− y∗)2

2σ2
∗

)]
, (12)

where y∗ is the true value at the estimated data point.
Thus, the log likelihood is changed by the logarithm of
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Figure 1. Layers of Relevance Vector Machines that propagate the first
estimations and the original receivers’ values to the next stage using the
predictive uncertainty measure. Each instance of the RVM is different from
the other by the choice of the dictionary of basis functions.

the likelihood of the new data value, y∗, at x∗ given
the predictive probability distribution N (f(x∗), σ

2
∗). Since

σ∗ ≥ σ, the change lies between −∞ and log 1√
2πσ

. If the
likelihood of the data is small, the log likelihood is reduced
largely indicating that the model’s prediction is poor at x∗.
We want a measure of how good the predictive probability
distribution N (f(x∗), σ

2
∗) is, however, y∗ is unavailable.

Thus, we estimate the probability distribution of y∗ to be
normal with mean and variance given by:

µ̄ = mean{yi}
xi∈S

, (13)

σ̄2 = var
xi∈S
{yi}, (14)

where S is a subset of the training data points (neighbours).
The expected change in log likelihood is given by [1]:

E [∆L] = log
1√

2πσ∗
− σ̄2 + (µ̄− f(x∗))

2

2σ2
∗

. (15)

The second term is the important one. If the predictive prob-
ability distribution does not match well with the probability
distribution estimated from the data in the neighbourhood,
the expected change in log likelihood is a negative number.
Using the measure in equation (15), it is possible to create
an uncertainty map with the largest negative values being the
most uncertain regions. Furthermore, using the uncertainty
map, it is possible to create a deep model, using more layers
of RVMs. Each RVM could utilize a different dictionary of
basis functions and as input, it could use the output of the
previous RVM by propagating only the estimations that are
trustworthy. Figure 1 illustrates this network architecture.

IV. SEISMIC SURVEY EXPERIMENTS

In a typical seismic survey, body waves created by a sur-
face source pass down into the earth with a proportion being
reflected back by impedance changes caused by changes in

rock properties at depth. The reflected waves arrive back at
the surface and are recorded by receivers, where the output
of a receiver is a digitized time series recorded at a constant
sample rate. The seismic traces can be organized in different
ways: a line of receivers can be viewed over all time stamps,
called the shot domain. Another way of looking at the data
would be to take the output of all receivers at a single instant
of time, known as a time slice.

In order to evaluate the performance of our proposed
system, seismic data were extracted from a synthetic data
set, called SEAM-2 [23], that was kindly provided by BP. If
a receiver is missing, a column of data would be missing in
the shot domain and a single point would be missing from
the time slice. Exhaustive experiments were made in the
time slice domain. For the RVM with many layers, estimated
data points are propagated through the network when the
uncertainty is large. We provide examples of predictive
uncertainty maps and also illustrate the CS capabilities in the
shot domain. To ensure that the results are consistent over
different instances of time slices with different structures,
we have extracted two hundred 128 × 128 patches. These
patches were then used to randomly remove receivers and
then reconstruct them. In all experiments, the SPGL11, the
POCS2 and RVM3 packages were used.

A. Trade-off between accuracy and time

The main variables that can change in the network ar-
chitecture are the number of layers, the patch size and the
basis functions. Due to the sequential nature of the model,
the more layers we use the longer the computational time.
To test the depth of the architecture, we used the two-
dimensional multi-scale Haar Wavelet Transform. By using
the smallest scale with support of 2 × 2, the finest details
of the signal were captured. Then, the basis functions of the
second scale with support of 4×4 were used to capture larger
regions and so on. In this experiment, we used networks with
one, two and three layers and for each we also varied the
patch size between 8×8, 16×16 and 32×32. In addition, we
used the Discrete Cosine Transform (DCT) with one layer.
Two hundred patches of seismic time slices were decimated
in different percentages and then reconstructed by each of
these configurations. The Feature Similarity (FSIM) index
[24] was used, which captures the degradation of a signal as
perceived in features (FSIM = 1 is perfect reconstruction).
Figure 2 shows the mean FSIM against the computational
time in seconds. By using 80% of the receivers, the accuracy
is high for all configurations. Smaller patches take less time
to execute, along with architectures with fewer layers. By
using 40%, there is a difference in accuracy between the first
layer of the Haar wavelets and the rest. This is due to the
fact that there are regions that are uncovered. The RVM with

1http://www.cs.ubc.ca/labs/scl/spgl1
2http://www.freeusp.org/synthetics/POCS example/index.html
3http://www.miketipping.com/downloads.htm
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Figure 2. Accuracy and computational time trade-off for various config-
urations of the network. Each configuration is labelled first with its patch
size and then with the number of layers used. (a) shows the trade-off when
80% of receivers are used, (b) uses 40% of receivers and (c) uses 20%.
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Figure 3. Seismic FSIM comparison

the DCT provides slightly better accuracy. By using 20% of
the receivers, the accuracy is now clustered in three groups.
The RVM with three layers can achieve similar results in
accuracy to that of the RVM with DCT illustrating that the
multi-scale usage of simple basis functions can match the
performance of the domain specific basis functions.

B. Comparisons

We mentioned earlier that the Fourier Transform is used
in seismic data processing as a sparsifying transform and
thus we compare the solvers using the DCT. The goal is
to make a comparison on reconstruction accuracy between
POCS, SPGL1 with DCT, the RVM with DCT and the RVM
with Haar wavelets (for completeness) using three layers on

(a) Original (b) 30% used (c) RVM-DCT
FSIM = 0.9851

(d) SPGL1-DCT
FSIM = 0.9743

(e) POCS
FSIM = 0.8810

(f) RVM-Haar
FSIM = 0.8753

(g) SPGL1-Haar
FSIM = 0.7864

Figure 4. Example of a time slice from the SEAM 2 dataset (a) is
decimated to only 30% of the receivers (inverted for visualization) (b).
Reconstruction by the RVM with DCT (c) outperforms both the SPGL1
with DCT (d) and POCS (e). The RVM with Haar (f) performs better than
the SPGL1 with Haar (g).

(a) RVM-DCT (b) SPGL1-DCT (c) POCS

(d) RVM-Haar (e) SPGL1-Haar

Figure 5. Difference maps of the original signal from Figure 4 compared
to each respective reconstruction. All difference maps show the absolute
difference but shifting all values by the median value of the domain for
illustration purposes. (a) shows the error in the RVM using DCT basis
functions which is minimal. (b) shows the error of the SPGL1 with DCT
being more visible but still small. (c), (d) and (e) show errors in regions
of large changes in the original signal.

32 × 32 patches. We decimated two hundred seismic time
slices in different percentages and reconstructed them using
all solvers. The mean FSIM for all solvers is plotted against
the percentage of measurements used in Figure 3. Examples
of different reconstructions can be seen in Figure 4 along
with the respective difference maps for each solver in Figure
5. We have also provided a reconstruction of SPGL1 with
Haar wavelets of scale three in Figure 4. This shows that
in this setting, the RVM does better at reconstructing than
SPGL1 and it shows the great importance of choosing the
correct basis functions for the solver. The RVM with DCT
performs as good as the SPGL1 with DCT with 20% of
receivers and more and they both outperform POCS. The
RVM with Haar is better than POCS but is not as good as
the RVM with DCT and SPGL1 with DCT. For seismic shot



(a) Original (b) 50% sensed

(c) Reconstruction

Figure 6. 500 × 1281 shot record (a) reconstruction using the RVM
(c) with three layers. Each line is the entire signal of one receiver and
decimation is done every other line (b) (inverted for visualization).

(a) Original (b) 30% sensed

(c) Reconstruction

Figure 7. 1281 × 1281 time slice (a) reconstruction using the RVM (c)
with three layers from 30% (b) of the original (inverted for visualization).

records, lines in the signal are removed. An example of 50%
of missing lines is shown in Figure 6b where every other
line is discarded and the reconstruction using the RVM with
Haar and three layers is shown in Figure 6c. Furthermore,
a complete time slice can be seen in Figure 7.

C. Uncertainty maps

As discussed, the predictive variances from equation (11)
do not behave as expected and thus we have proposed the
use of a new predictive uncertainty measure in equation (15).
In order to illustrate this, an example of an uncertainty map
was produced using the proposed measure and compared to
the predictive variances. Figure 8a shows the original signal,
Figure 8b shows the efficiently sensed seismic signal from
50% of receivers and Figure 8c shows the failed reconstruc-

(a) Original (b) 50% used (c) Early stop

Figure 8. The algorithm was stopped in the second layer using Haar
Wavelets to show an example of poor reconstruction. This is done in order
to compare the uncertainty maps. (b) is inverted for visualization purposes.
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(c) Predictive Variance

Figure 9. Figure (a) illustrates the differences between the original time
slice and the reconstruction. It shows that the majority of the area is
reconstructed accurately (in blue) with some areas being reconstructed
poorly. Figure (b) shows the uncertainty map produced by the proposed
predictive uncertainty measure. Figure (c) illustrates the predictive variance
which fails to capture the error. All predictive uncertainties were shifted
and normalized in the 0− 1 range. The proposed measure produces large
uncertainty in regions of large reconstruction error and vice versa.

tion (stopped early). Figure 9a shows the error differences
between the original and the reconstructed, Figure 9b shows
the uncertainty map produced by the new measure and
Figure 9c shows the uncertainty map produced by the RVM
with the original predictive variances. The model with the
proposed measure is more certain about regions of good
reconstruction and less certain in regions that the model did
not perform well. The proposed uncertainty measure can
be used for seismic survey design, by using the available
data, it can suggest regions to place receivers to minimize
uncertainty.

V. CONCLUSION

In this work, we applied the RVM to the seismic CS
framework and used a new predictive uncertainty measure.



Using this measure, we were able to create networks of
RVMs with many layers. Due to the different possibilities
of the network, we performed experiments to examine the
trade-off between reconstruction accuracy and computa-
tional time. We compared the RVM with state-of-the-art
seismic reconstruction algorithms and demonstrated that it
has comparative reconstruction accuracy with SPGL1 and
outperforms POCS. In addition, we examined the uncertainty
map produced by the proposed measure and illustrated that
it compares well with the errors in the reconstruction as
opposed to the predictive variances of the original RVM.

The proposed framework offers great advantages such as
state-of-the-art reconstruction accuracy and practical com-
putational time through the utilization of smaller patches
which can be processed in parallel. It also provides a multi-
scale dictionary framework that is able to capture different
variations in the data using appropriate basis functions,
analytic or learned from data. It is possible to improve
the reconstruction accuracy by passing only the relevant
information from each layer. In addition, the predictive un-
certainty measure can be very useful when determining the
level of risk associated with the reconstruction on particular
regions. This can provide an on-line data acquisition process
where the algorithm guides the seismic survey design in the
future.
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relevance vector machine through augmentation,” in Pro-
ceedings of the 22nd International Conference on Machine
Learning, 2005.

[23] M. Oristaglio, “Seam phase ii land seismic challenges,” The
Leading Edge, vol. 31, no. 3, pp. 264–266, 2012. [Online].
Available: http://dx.doi.org/10.1190/1.3694893

[24] L. Zhang, D. Zhang, X. Mou, and D. Zhang, “Fsim: A
feature similarity index for image quality assessment,” IEEE
Transactions on Image Processing, vol. 20, no. 8, pp. 2378–
2386, Aug 2011.


