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ABSTRACT

Compressive sensing is used to improve the efficiency of
seismic data acquisition and survey design. Nevertheless,
most methods are ad hoc, and their only aim is to fill in the
gaps in the data. Algorithms might be able to predict missing
receivers’ values, however, it is also desirable to be able to
associate each prediction with a degree of uncertainty. We
used beta process factor analysis (BPFA) and its variance.
With this, we achieved high correlation between uncertainty
and respective reconstruction error. Comparisons with other
algorithms in the literature and results on synthetic and field
data illustrate the advantages of using BPFA for uncertainty
quantification. This could be useful when modeling the
degree of uncertainty for different source/receiver configura-
tions to guide future seismic survey design.

INTRODUCTION

Seismic data acquisition involves sampling the seismic wavefield
at or near the earth’s surface. A source at the surface creates a wave-
field that is reflected and refracted by changes in impedance.
Surface receivers record the reflected wavefield generally on a regu-
lar grid. But some of those receivers may be missing, caused either
by malfunction or because they could not be placed in the survey’s
required location (e.g., because of a surface obstruction). To over-
come this, signal reconstruction algorithms are used to replace or
restore the output of the missing receivers (traces). Most of the
modern algorithms use the principle of compressive sensing (CS),
which uses the assumption that the signal of interest is either sparse
(a few nonzero elements) in nature or in some other basis. In the
seismic CS literature, sparsity is assumed using the Fourier (Sacchi
et al., 1998), the Radon (Trad et al., 2002), the curvelet (Herrmann

and Hennenfent, 2008), or the focal transform (Kutscha and
Verschuur, 2016) to name a few.
A popular method that uses the Fourier transform is the projection

onto convex sets (POCS) (Abma and Kabir, 2006), which transforms
the available data and uses hard or soft thresholding (Stanton et al.,
2015) to reconstruct the desired signals. Iteratively reweighted least
squares were also proposed (Zwartjes and Sacchi, 2007) in the
Fourier domain. Spectral projected gradient for L1 (SPGL1) (van
den Berg and Friedlander, 2009) is another method that solves
the problem by using a predefined dictionary of basis functions that
provide a sparse representation to solve the l1-norm minimization
problem. Tensor completion (Kreimer and Sacchi, 2011, 2012)
algorithms were also proposed to scale for larger dimensions. Other
techniques with prediction filters use nonaliased low frequencies
of seismic data to reconstruct the aliased parts (Spitz, 1991; Porsani,
1999; Naghizadeh and Sacchi, 2007). Alternative methods have been
proposed that do not require a predefined dictionary of basis functions
to be used such as Beckouche and Ma (2014), Zhu et al. (2015),
and Turquais et al. (2015). These techniques train on available
seismic data and learn a dictionary that can be used for sparse rep-
resentation.
Recently, new approaches in seismic CS have been proposed that

use principles from the Bayesian statistics and machine learning
literature. The relevance vector machine (RVM) (Tipping, 2001;
Tipping and Faul, 2003) has been applied to seismic interpolation
(Pilikos and Faul, 2016) with success, matching the performance
of the SPGL1 for time slices. In addition, Pilikos and Faul (2016)
use an uncertainty measure improvement and illustrate an uncertainty
map for the predictions. Another method that has been used is the
beta process factor analysis (BPFA) to learn a dictionary of basis from
the available seismic data for interpolation and denoising (Pilikos and
Faul, 2017). It has been shown that BPFA outperforms the SPGL1
and POCS when processing time slices. Furthermore, when the data
are reordered in the shot record domain, there is no sign of aliasing in
the frequency wavenumber (f-k) domain (Pilikos et al., 2017).
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The core idea behind Bayesian machine learning is the construc-
tion of models using probability distributions over random variables.
This provides flexibility in modeling because it is possible to incor-
porate prior knowledge and guide the model. Furthermore, it allows
the model to provide uncertainty information about its predictions.
Bayesian statistics has a long history in solving inverse problems
in geophysics. Duijndam (1988a, 1988b) gives a comprehensive in-
troduction to the field, and later Ulrych et al. (2001) write a tutorial
with seismic applications. Malinverno and Briggs (2004) expand this
using empirical Bayes for uncertainty quantification. Other applica-
tions of Bayesian estimation can be found in Wang et al. (2008) for
seismic wavefield separation and Fjeldstad and Grana (2018) for pet-
rophysics-seismic inversion to name a few. In this paper, we will use
Bayesian machine learning, as mentioned in the previous paragraph,
for seismic CS to create probabilistic data-driven models and at the
same time create uncertainty maps. To avoid confusion, this type of
models do not refer to velocity models but rather to constructions
with general assumptions that are adaptable to the available data.
The first model that we will use is the RVM. This model uses a

sparsity promoting prior distribution in the form of a hyper-prior over
the coefficients of a linear combination of basis functions. By learn-
ing the appropriate parameters, the model can provide a predictive
mean and predictive variance of the desired model. These can then
be used for prediction and uncertainty quantification. Nevertheless,
the predictive variance was found to behave counter-intuitively when
using basis functions with finite support (Rasmussen and Quiñonero
Candela, 2005), providing small uncertainty when data points are far
from the model and vice versa. To overcome the problematic predic-
tive variance, Faul and Pilikos (2016) propose a new uncertainty
measure for the RVM. This calculates the expected change in the
likelihood that the predicted data point would have. Using this
proposed measure, Pilikos and Faul (2016) apply it to seismic data
with some preliminary results.
The second model that we will use is the BPFA (Zhou et al.,

2012). This model uses a different approach to enforce sparsity
on the coefficients of the linear combination of the desired model.
This is achieved using a Bernoulli distribution to control whether a
coefficient is zero or not. The parameter that controls the Bernoulli
distribution is governed by a Beta distribution to allow flexibility in
the level of sparsity. In addition, this is then element-wise multiplied
with a normal distribution to produce the value of a desired coef-
ficient. This method of modeling provides exact zero coefficients as
opposed to the RVM. Another advantage is that it also learns a dic-
tionary of basis from the available data. This provides another level
of flexibility that makes it more accurate in reconstructions. BPFA
was compared with other algorithms in the literature and obtained
state-of-the-art reconstructions without any signs of aliasing in the
f-k domain (Pilikos and Faul, 2017; Pilikos et al., 2017). In this
paper, we propose to use BPFA to create uncertainty maps. We
calculate the variance for each prediction obtained by the inference
process that uses Gibbs sampling. Using the variance, we show that
it is possible to obtain much better uncertainty maps for the recon-
structed signals compared with others in the literature.
The structure of the paper is as follows: first, an introduction to

Bayesian machine learning is given, providing basic definitions and
explanation of the RVM. Various modifications to the predictive
variance of the RVM are also discussed. In addition, BPFA is de-
scribed along with how the variance of its predictions can be used to
create uncertainty maps for seismic CS. Experiments on sections of

time slices are provided along with representative uncertainty maps
and reconstructions for all algorithms. Furthermore, uncertainty
maps for shot records are provided. A thorough comparison and
analysis on thousands of uncertainty maps using different methods
illustrates their performance in detail using the Spearman’s corre-
lation coefficient. Stacking of uncertainty maps is also provided that
improves the correlation with the reconstruction error. Finally, we
include an example on field data along with conclusions.

BAYESIAN MACHINE LEARNING

Using data-driven models to describe real-world observations has
increased in popularity. Uncertainty is an integral part of the model
and the measurements, and models that are able to capture it are very
desirable. Bayesian machine learning is a framework that tackles this
by allowing the construction of models using probability distributions
over random variables. The Bayes rule is defined by

pðΘjKÞ ¼ pðKjΘÞpðΘÞ
pðKÞ ; (1)

where Θ is the collection of all unknown variables and K are the
available observations. The term pðΘÞ is the prior distribution of
the variables that capture our prior belief of how they are distributed,
pðKjΘÞ is the likelihood function that gives the probability of
the observations being generated using a respective configuration
of Θ, and pðKÞ is the distribution of the observations given in
the current model. Finally, pðΘjKÞ is the posterior distribution of
the variables given in the observations. This is the quantity of interest
to learn the model and make predictions.
Research in Bayesian machine learning involves the construction

of models by defining appropriate prior distributions and likelihood
functions. Then, an inference algorithm is used that is able to infer the
variables of interest. In the next sections, we will discuss two models
that incorporate sparsity for CS using the Bayesian framework.

The RVM

Consider a collection of training data K ¼ fkðiÞgNi¼1, with each
kðiÞ ∈ Rc being the coordinates of a receiver (stored in a vector).
Each receiver has a scalar corresponding target magnitude,
tðiÞ ∈ R. A Bayesian regression problem is the prediction of tð�Þ from
an unseen kð�Þ. To be able to make predictions, a model has to be
constructed that effectively describes the training data. A dictionary
of basis functions ϕl; l ¼ 1; : : : ; L is used as part of the model to
transform the input space into a desired domain. For CS, this domain
has to be sparse. The basis functions are assumed predefined, fixed,
and nonlinear. The problem is still linear in the coefficients but in a
transformed input space. The model becomes

tðiÞ ¼
XL
l¼1

wlϕlðkðiÞÞ þ ϵðiÞ ¼ wTϕðkðiÞÞ þ ϵðiÞ; (2)

where w ∈ RL are the coefficients of the linear combination of
the transformed input data, ϵðiÞ ∼N ð0; σ2Þ is the independent and
identically distributed (i.i.d.) additive Gaussian noise, and ϕðkðiÞÞ ¼
½ϕ1ðkðiÞÞ;ϕ2ðkðiÞÞ;ϕlðkðiÞÞ; : : : ;ϕLðkðiÞÞ�T with each ϕlðkðiÞÞ being
a certain basis function applied to a particular data point. The
corresponding model likelihood is given by

P16 Pilikos and Faul

D
ow

nl
oa

de
d 

02
/1

1/
19

 to
 9

0.
20

5.
13

6.
19

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



pðtðiÞjw;K;σ2Þ¼
YN
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−

1

2σ2
ðtðiÞ−wTϕðkðiÞÞÞ2

�
:

(3)

A required assumption is that the acquired signal is sparse (or could
be transformed to a sparse domain). Thus, a prior probability
distribution on the coefficients w that promote sparsity is used. A
normal prior distribution is preferred for ease of calculations.
Each coefficient wl is associated with a different variance controlled
by the precision (inverse of variance) αl. The prior distribution is
given by

pðwjαÞ ¼
YL
l¼1

N ðwl; 0; α−1l Þ ¼
YL
l¼1

ffiffiffiffiffiffi
αl
2π

r
e−

αl
2
w2
l ; (4)

which is a product of zero mean normal distributions with a separate
precision αl. This allows some probability mass to potentially con-
centrate on a few wl (with small αl) and others to be zero or close to
zero (with infinite αl) resulting in the desired sparsity. A suitable prior
for α is the Gamma distribution (Tipping, 2001). During the inference
stage, some coefficients w are deemed relevant, and others tend to
zero hence the name of the RVM.
Inference involves finding the optimum configuration of α that

maximizes the model likelihood. We use a fast version of the
RVM as proposed by Tipping and Faul (2003). After obtaining suit-
able maximizing estimates for α and thus w, these can be used for
predictions. A predictive distribution is constructed (Tipping, 2001)
as a normal distribution N ðm�; σ2�Þ, where m� ¼ μTϕðkð�ÞÞ and
σ2� ¼ σ2 þ ϕðkð�ÞÞTΣϕðkð�ÞÞ. The terms Σ and μ are given by

Σ ¼ ðσ−2ΦTΦþ AÞ−1 and μ ¼ σ−2ΣΦTt; (5)

where A ¼ diagðα1; α2; : : : ; αLÞ and Φ ∈ RN×L is the basis matrix
containing all basis functions at all measured data points. The func-
tion ϕðkð�ÞÞ contains all basis functions evaluated at kð�Þ, m� is
called the predictive mean, and σ2� is called the predictive variance
where the former gives the prediction and the latter gives the
uncertainty.
This predictive distribution is heavily dependent on the model

because it depends on ϕðkð�ÞÞ. It is customary to choose basis func-
tions for the dictionary, which decay quickly when moving away
from their center, or basis functions with finite, compact support.
Therefore, the degenerate case is possible, that is, ϕðkð�ÞÞ is close
to, or even equal to zero, and thus, the predictive probability dis-
tribution becomes N ð0; σ2Þ, which is meaningless. This was noted
by Rasmussen and Quiñonero Candela (2005) with examples of
predictive variances opposite to what would be desirable (small pre-
dictive variance should be close to the training data and large away
from it). Thus, we use the discrete cosine transform (DCT) as dic-
tionary of basis functions with the RVM to minimize the problem
of degeneration and at the same time obtain higher reconstruction
accuracy (Pilikos and Faul, 2016).
Rasmussen and Quiñonero Candela (2005) propose to augment

the RVM by adding a basis function centered at the test point that
might potentially be far from the support of all the previously added
basis functions. By doing that, the training of the model does not
change before test time. Thus, for every missing/test data point, one
new basis function is added. We will use this to illustrate a possible

uncertainty map obtained by the augmentation of the RVM.
However, to achieve the best possible results with the RVMs
augmentation, tuning is necessary such as the choice of the new
basis function and its corresponding parameters. In addition, a cor-
responding weight and precision of that weight α� need to be set.
Tuning the RVMwith augmentation is not the purpose of this paper,
and thus, we only include one example during comparisons.

Expected change in model likelihood

We will assume that we have trained a model of the RVM with
the available data and then treat the missing receivers as new data
points. Following the approach in Faul and Pilikos (2016), we
calculate the expected change in model likelihood (ExpCML)
for the current model, when a data sample ðkð�Þ; t�Þ is added.
Let S be a subset of the samples, this could be all available or neigh-
boring receivers of kð�Þ. We estimate the probability distribution of
t� to be normal with mean and variance

m̄ ¼ mean
kðiÞ∈S

ftðiÞg; σ̄2 ¼ var
kðiÞ∈S

ftðiÞg: (6)

With this estimate, the expected change when considering kð�Þ in
the logarithm of the marginal likelihood (Faul and Pilikos, 2016)
is given by

E½ΔL� ¼ log
1ffiffiffiffiffi
2π

p
σ�

−
σ̄2 þ ðm̄ −m�Þ2

2σ2�
; (7)

where ΔL is the change in the logarithm of the marginal likelihood.
This expected change creates an uncertainty map with the largest
negative values being the most uncertain regions. For further details,
refer to Faul and Pilikos (2016).

Beta process factor analysis

For the previous methods, the discussion was given with a
predefined dictionary of basis functions that limit the modeling
capabilities. BPFA (Paisley and Carin, 2009; Zhou et al., 2012) is
a method that overcomes this limitation. We will use D ∈ Rd×L to
denote the dictionary of basis to distinguish it from the predefined
dictionary of basis functions where L is the number of basis. We
assume that the data matrixX ∈ Rd×T is generated by an underlying
process with its columns xðiÞ, i ¼ 1; : : : ; T each corresponding to a
patch of seismic data. Note that T is the number of patches that the
algorithm uses. In all our experiments, we will use a patch size of
8 × 8 in sections of 128 × 128 of time slices (prestack).
Each xðiÞ contains 64 entries of kðiÞ because each kðiÞ corresponds

to a receiver and each patch contains 8 × 8 receivers. Each patch is
generated by

xðiÞ ¼ DwðiÞ þ ϵðiÞ; (8)

where wðiÞ contains the patch’s coefficients. In the case of training
the BPFA model with missing data, a sampling matrix is required.
We will use ΔðiÞ ∈ f0; 1gmðiÞ×d constructed by removing rows from
the identity matrix of the corresponding missing locations in xðiÞ

and mðiÞ being the number of available measurements in that
specific patch. We will denote yðiÞ ∈ RmðiÞ

and define it by

Seismic uncertainty maps P17
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yðiÞ ¼ ΔðiÞxðiÞ: (9)

Note that in practice, we do not collapse the signal as in the RVM
but rather insert zeros at the missing locations.
Continuing with the definition of the model, the coefficients

wðiÞ depend on two variables given by wðiÞ ¼ zðiÞ⊙sðiÞ, where
zðiÞ ∈ f0; 1gL and sðiÞ ∈ RL correspond to the sparsity and the ac-
tual value, respectively. This means that if the coefficient is nonzero,
the corresponding basis is used when generating xðiÞ. The term ϵðiÞ

is modeled as zero mean Gaussian noise. Using the likelihood
for the variables and appropriate prior distributions (Pilikos
and Faul, 2017), the Bayes rule as defined in equation 1 gives
the posterior distributions for D and wðiÞ ¼ zðiÞ⊙sðiÞ, where ⊙;
is the element-wise multiplication. It can be shown that D ¼
½d1; d2; : : : ; dl; dL� is drawn from

pðdlj−Þ ∼N ðμdl ;ΣdlÞ; (10)

where

Σdl ¼
�
dIþ γϵ

XT
i¼1

ðzðiÞl sðiÞl Þ2ðΔðiÞÞTΔðiÞ
�

−1
(11)

and

μdl ¼ γϵΣdl

XT
i¼1

zðiÞl sðiÞl ~xðiÞ−l (12)

with

~xðiÞ−l ¼ ðΔðiÞÞTyðiÞ − ðΔðiÞÞTΔðiÞDðsðiÞ⊙zðiÞÞ
þ ðΔðiÞÞTΔðiÞdlðsðiÞl zðiÞl Þ; (13)

and γϵ being the noise precision. The posterior distribution of z
ðiÞ
l ∀ i

can be shown to be

pðzðiÞl j−Þ ∼ Bernoulli

�
p1

p0 þ p1

�
; (14)

where p1 is the posterior probability that zðiÞl ¼ 1 and is given by

p1 ¼ πl exp

�
−
γϵ
2
ððsðiÞl Þ2dTl ðΔðiÞÞTΔðiÞdl − 2sðiÞl dTl ~x

ðiÞ
−l Þ

�
:

(15)

On the other hand, the posterior probability that zðiÞl ¼ 0 is given by
p0 ¼ 1 − πl. Then, the posterior distribution of s

ðiÞ
l ∀ i can be shown

to be

pðsðiÞl j−Þ ∼N ðμsðiÞl ;ΣsðiÞl
Þ; (16)

where

Σ
sðiÞl

¼
� ðγs þ γϵdTl ðΔðiÞÞTΔðiÞdlÞ−1 if zðiÞl ¼ 1

γ−1s if zðiÞl ¼ 0
(17)

and

μsðiÞl
¼

�
γϵΣsðiÞl

dTl ðΔðiÞÞTΔðiÞ ~xðiÞ−l if zðiÞl ¼ 1

0 if zðiÞl ¼ 0
(18)

with γs the precision for the weights. By drawing from these dis-
tributions and using equation 8, one estimate of xðiÞ is obtained. We

will see in the next section how we can use the
collection of the draws and consequently the es-
timations of xðiÞ to create uncertainty maps. Fur-
ther information regarding the prior distributions,
implementation and parameter details can be
found in Pilikos and Faul (2017) where this
model was used for seismic CS and denoising.

Variance of BPFAs estimations

BPFA estimates the model’s variables using
expressions depending on other variables that
are considered fixed for a given iteration. This
is called a Gibbs iteration, and the entire pro-
cedure of obtaining an estimate for one variable
(using the posterior conditional distribution)

–4000 –2000 0 2000 4000

Crossline offset (m)

–4000

–2000

0

2000

4000

In
lin

e 
of

fs
et

 (
m

)

Figure 1. An example of a time slice extracted from the SEAM II
data set. We partition time slices into sections of 128 × 128.
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Figure 2. (a) Original signal used for evaluating uncertainty maps of dimension
128 × 128 receivers. This was extracted from the SEAM II data set. (b) The same signal
using only 50% of receivers kept randomly.
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given the others is called Gibbs sampling. We included only three in
the previous section to facilitate the discussion. The complete set of
expressions can be found in the Appendix of Zhou et al. (2012).
A feature of the algorithm is that it splits the signal into smaller

patches and uses them in a sequential manner. To have enough train-
ing data to learn the dictionary of basis, overlapping patches are
used. We chose a patch size of 8 × 8 in all our BPFA experiments
in sections of time slices of 128 × 128 as discussed in the next sec-
tion. In the first iteration, the algorithm extracts all 256 patches
(there are 128∕8 ¼ 16 patches along the horizontal axis and
128∕8 ¼ 16 patches along the vertical axis). This is essentially what
an algorithm would extract without overlaps. Then, in the second
iteration, the algorithm shifts the starting point of extraction by one
receiver down. This results in the extraction of 240 patches (there
are again 16 patches along the horizontal axis and 16 − 1 ¼ 15

patches along the vertical axis because the last one is not a complete
8 × 8 patch). This procedure continues for all 64 receivers in a given
patch, resulting in 64 such sets of patches in which each set contains
hundreds of patches.
For the first Gibbs iteration of the algorithm, the inference starts

using the first set of patches. Then, in the second iteration, the sec-
ond set is extracted and then first and second sets are used for es-
timation. After all 64 iterations, all sets are used at the same time to
infer the variables of interest using ð128 − 7Þ2 ¼ 14; 641 patches in
total. In the final iteration, each model variable is drawn from its
corresponding posterior distribution, and it is used to calculate
the receivers’ value for all patches using equation 8. Therefore, each

receiver’s value is inferred various times because it is contained in
various patches (at most 64 in our example). To obtain the final
values, the mean of each receiver’s value is obtained by averaging
over all its estimated values. In the same manner, the uncertainty of
the prediction at that receiver location is obtained by calculating the
variance of all its estimated values. Zhou et al. (2009) provide fur-
ther information regarding the patch processing procedure.

UNCERTAINTY MAPS FOR SYNTHETIC DATA

To test the uncertainty maps, we used a 3D synthetic data set
called SEG Advanced Modeling II (SEAM II) (SEG, 2018a). It con-
tains an artificial source (shot) and a grid of receivers. We will work
in the common-shot domain in which a gather contains the output of
all receivers obtained from the same source. The data set has a
6.25 m spatial sampling. There are 1281 receivers along each line,
and there are 1281 lines spanning 8000 m covering vertical and
horizontal directions. The temporal sampling is 6 ms, and each trace
has 500 samples resulting in 3 s of recordings.
We will focus on the reconstruction of sections of time slices

similar to Pilikos and Faul (2016, 2017) and Pilikos et al.
(2017). We extract 128 × 128 sections for receiver lines that pass
far from and close to the source as shown in Figure 1. To
interpolate a shot record (x-t domain), we process time slices inde-
pendently and store all the data into a 3D cube. Then, we extract the
receiver line of interest by using all time samples and all receivers at
that location. Pilikos et al. (2017) follow this procedure and illus-
trate that it is possible to reconstruct under-sampled data without
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Figure 3. (a) The RVM and DCT with Q ¼ 36.7270 db, (b) the
respective reconstruction error, (c) the BPFA reconstruction with
Q ¼ 28.9016 db, (d) the BPFA error, (e) the POCS reconstruction
with Q ¼ 24.0410 db, and (f) its respective error.
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Figure 4. (a) The uncertainty map using the RVMs original predic-
tive variance and DCT, (b) the ExpCML, (c) the uncertainty map
with augmentation, (d) the BPFA uncertainty map, and (e) the re-
spective learned dictionary of basis by BPFA. All figures are pro-
duced while reconstructing the signals of Figure 3.
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any aliasing. For the RVM results, we used the package from Tip-
ping (2018), and for the BPFA results, we used the package from
Zhou (2018). All experiments were performed as single-core jobs
on machines with Intel(R) Xeon(R) CPU E5-2650 with 2.00 GHz.

Uncertainty visualization using different methods

One way to illustrate the effectiveness of the methods is to visu-
alize the uncertainty maps produced along with the respective
reconstruction error. Figure 2a shows the original section of a time
slice. Figure 2b shows the signal using 50% of receivers. The
receivers were muted randomly by going through the signal and
drawing a random number between 1 and 100. If that number was
less than 50, it was kept otherwise not considered. Note that random
subsampling reduces aliasing but introduces incoherent noise
(Kumar et al., 2015). This type of random sampling is not realistic
in seismic surveys, nevertheless, it is used in this work to illustrate
uncertainty.
As discussed, the RVM uses a predefined dictionary of basis

functions, therefore, we chose the DCT that was used successfully
by Pilikos and Faul (2016). Figure 3a shows the RVM re-
construction with the reconstruction quality Q defined by,

Q ¼ 10 log
kxk22

kx − x̂k22
; (19)

where x is the original signal and x̂ is the
reconstruction. Figure 3b shows the reconstruction
error. Figure 3c illustrates the reconstruction using
the BPFA with lower Q, and Figure 3d shows its
respective reconstruction error. For completeness,
we include a reconstruction using the POCS algo-
rithm (Abma and Kabir, 2006) mentioned earlier.
Figure 3e shows the reconstruction using POCS
with reconstruction quality lower than the RVM
and the BPFA methods. The respective recon-
struction error is included in Figure 3f. We can
see that both Bayesian algorithms perform better
than POCS. Nevertheless, this is not the purpose
of the paper. Pilikos and Faul (2016, 2017) provide
a comprehensive comparison of reconstruction ac-
curacy of these algorithms. We will continue the
discussion for uncertainty quantification.
Figure 4a shows the predictive variance pro-

duced by the RVM, which is spread around
the signal without any particular pattern. Fig-
ure 4b shows the expected change in the model
shifted so that the higher the values the more un-
certain the model. This is achieved by negating
all the values and then adding the minimum value
to each location. This shifts the range from zero
to positive values. As it can be seen, it captures
the variance of the signal with resemblance to the
original. Nevertheless, it does not show any simi-
larities with the reconstruction error produced by
the RVM. Figure 4c shows the predictive vari-
ance with augmentation using Gaussian basis
functions at test points. The uncertainty map is
similar to the original predictive variance.
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Figure 5. (a) An artificial surface obstruction resulting in 390 receiv-
ers missing, (b) the BPFA reconstruction with Q ¼ 28.6081db,
(c) the reconstruction error, and (d) the uncertainty map.
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Figure 7. (a) The RVMs recovery, (b) error, (c) BPFAs recovery, and (d) error.
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Figure 6. (a) Original signal and (b) using only 50% of the receivers randomly.
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On the other hand, the uncertainty map pro-
duced by BPFA can be seen in Figure 4d. The
learned dictionary of basis is illustrated in Fig-
ure 4e, which captures the direction of the largest
variations in the signal. The uncertainty map pro-
duced by BPFA shows good correlation with
the reconstruction error. It looks more informa-
tive than the expected change in Figure 4b,
but it is not easy to compare with the rest of
the methods. Thus, a quantitative comparison is
required and will be given later in this paper.
Note that we will not follow the comparison with
the RVMs augmentation and the ExpCML because, for a fair
comparison, they require extensive parameter tuning and is not
the purpose of the paper.
Before providing a quantitative comparison of uncertainty maps,

we illustrate another example of reconstruction using the BPFA. In
this case, we remove 390 receivers and create a gap similar to that
caused by a surface obstruction at the time of acquisition. In this
case, it could be a river where receivers cannot be placed. Figure 5a
shows the signal with the gap, and Figure 5b shows the BPFA
reconstruction. The reconstruction error obtained by the BPFA
is shown in Figure 5c, and the uncertainty map is shown in Fig-
ure 5d. We can see that the reconstruction is of high quality at
Q ¼ 28.6081 db albeit, with some error. Nevertheless, this error is
captured by the uncertainty map, illustrating the regions where the
BPFA is uncertain matching with the location of error.

Sorting the uncertainty maps in the shot record
domain

Following the time slice processing approach that was used by
Pilikos et al. (2017), we process one section of a time slice at a time,
and later combine all reconstructed sections into a shot record. This
way, it is possible to visualize the uncertainty over the entire shot
record and also visualize any aliasing in the f-k domain. Entire
receivers are missing, as shown in Figure 6b, which means that
for each time slice, the same samples are missing. To obtain an
uncertainty map using time slice processing, we randomly removed
receivers from 5000 sections of time slices (500 time samples for
10 sections) of 128 × 128 dimensions (last section is 128 × 129)
and then reconstructed them. This was done for the RVM and
the BPFA for different percentages of receivers.
Figure 6a shows the original signal, and Figure 6b shows the

signal with only 50% of the receivers used. Figure 7a shows
the RVMs reconstruction and the respective reconstruction error
can be seen in Figure 7b. The same signals for BPFA can be seen
in Figure 7c and 7d, respectively. We continue the discussion on
the uncertainty, and we plot the uncertainty maps in Figure 8 for
the signals in Figure 7. Figure 8a shows the variance of the BPFA
normalized to one. That is, within each section of a time slice, we
divide each receiver with the maximum value in that section. Dif-
ferent sections have varying levels of variance with a wide range of
values. If we normalized over the entire shot record, many details
would be lost. Figure 8b shows the respective uncertainty map
produced by normalizing the RVMs predictive variance using
the same procedure. The RVMs predictive variance is equal to
one when the receivers have not yet recorded reflections (i.e.,
the variance is one prior to the first arrival). This is due to the fact
that the variance in this region is very low, and the RVMs
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Figure 8. (a) The BPFAs uncertainty map and (b) RVMs uncertainty map.
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Figure 9. (a) Original, (b) 50% of receivers, (c) the BPFAs
reconstruction with Q ¼ 33.8258 db, (d) the BPFAs reconstruction
error, (e) the BPFAs variance, and (f) the learned dictionary.
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Figure 10. Direct scatter plot between the BPFAs variance and the
respective reconstruction error.
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reconstruction is the same everywhere using one large basis func-
tion for reconstruction. This in turn produces the worst possible
uncertainty of the same value. We will quantify the overall perfor-
mance in the next section.

Uncertainty quantification using the Spearman’s
correlation coefficient

From the visualizations in the previous section, it can be seen that
the BPFAs variance creates informative uncertainty maps. To evalu-

ate this over various signals and scenarios, we
need a quantitative metric. Then, we can com-
pare it against the RVM and also get a better
understanding of the methods. To do this, we
propose to check how much the reconstruction
error correlates with the uncertainty map in a cor-
responding receiver location. That is, ideally, the
larger the reconstruction error in a data point the
larger the uncertainty and vice versa.

Scatter plots

Consider the signals in Figure 9 with a direct
scatter plot between the BPFAs variance and the
respective reconstruction error in Figure 10. We
can see that many data points are concentrated
near the origin, and it is not clear how the two
variables are correlated. Therefore, we transform
them to their ranked version, which means that

we sort the data points by their magnitude, with data points having
the same magnitude being assigned the same rank. The ranked
version is now plotted for all variables of interest. Figure 11a shows
the same data points as in Figure 10 but now ranked according
to their value. This allows the data points to spread out instead
of being near the origin. Comparing the scatter plots in Figure 11,
we can see that the BPFAs variance correlates much better with the
reconstruction error.

Analysis using the Spearman’s correlation coefficient

To evaluate the performance over numerous sections of time
slices, we will use the Spearman’s correlation coefficient. This
coefficient evaluates how two variables are related to each other,
i.e., as one grows what happens to the other. The Spearman’s
correlation coefficient is defined as

Spearman’s correlation coefficient

¼
P

n
i¼1ðxi − μxÞðyi − μyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1ðxi − μxÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n
i¼1ðyi − μyÞ2

q ; (20)

where n is the number of receiver locations used in the calculation
(at predicted locations), fxigni¼1 and fyigni¼1 are the variables of in-
terest, and μx and μy are their respective means. Note that each var-
iable is ranked as we have seen in Figure 11. The value ranges from
−1 to þ1. Positive correlation means that as one grows so does the
other. On the other hand, if the other decreases in value, it has neg-
ative correlation. In our case, we would like to check the correlation
between the variables that we use to create uncertainty maps
(BPFAs variance and RVMs predictive variance) and their respec-
tive reconstruction errors.
We will use 5000 sections of time slices far from and near the

source as illustrated in Figure 1 for three percentages (30%, 50%,
and 70%) of receivers used. We split the evaluation for far from

Table 1. Mean uncertainty quantification for 2000 sections
(1–200 time samples) of far source signals.

Spearman’s correlation coefficient between variance and
reconstruction error

Percentage used 30% 50% 70%

RVMs predictive variance 0.0027 0.0021 0.0012

BPFAs variance 0.4092 0.4056 0.3724

Table 2. Mean uncertainty quantification for 3000 sections
(201–500 time samples) of far source signals.

Spearman’s correlation coefficient between variance and
reconstruction error

Percentage used 30% 50% 70%

RVMs predictive variance 0.2779 0.2962 0.1967

BPFAs variance 0.5254 0.5221 0.5337

Table 3. Mean uncertainty quantification for 1000 sections
(1–100 time samples) of close to source signals.

Spearman’s correlation coefficient between variance and
reconstruction error

Percentage used 30% 50% 70%

RVMs predictive variance 0.0718 0.1477 0.1174

BPFAs variance 0.5804 0.5169 0.5083
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Figure 11. Ranked scatter plots for (a) BPFAs variance (0.7064) and (b) RVMs predic-
tive variance (0.3514) against their respective reconstruction errors. In the previous sen-
tence, the values in parenthesis are the Spearman’s correlation coefficients for each
relationship as defined in equation 20.
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source signals and close to source signals and also for different time
samples.
Table 1 shows the mean Spearman’s correlation coefficient, cal-

culated for both uncertainty methods along with three different per-
centages for the first 2000 sections of time slices. For these results,
we used the sections of time slices when t, the index of the time
sample, is less than or equal to 200. There are many sections that
include almost zero signal, where the receivers have not yet re-
corded the signal. It is clear that the BPFAs variance is positively
correlated with the reconstruction error with a higher correlation
coefficient than the RVM. In addition, it is only slightly affected
by the percentage of the available receivers used provided that there
are enough training data to learn a dictionary of basis. On the other
hand, the RVMs predictive variance correlation is very close to zero.
Table 2 shows the average Spearman’s correlation coefficient for
the last 3000 sections of time slices when t > 201. In this region,
there are sections with larger variance. The correlation is higher for
both algorithms in general due to the presence of signals with higher
variance. The BPFAs variance is more consistent and not signifi-
cantly affected by the percentage as opposed to the RVMs predic-
tive variance.
Moving on to closer to source sections of time slices, Table 3

shows the average Spearman’s correlation coefficient for 1000 sec-
tions when t < 101. This region is characterized with very high and
low variance. We can see that the BPFAs variance is still more cor-
related than the RVMs predictive variance. Table 4 shows the aver-
age correlation for the remaining 4000 sections when t > 100. The
BPFAs variance is again better with the RVMs predictive variance
obtaining improved results. From the results of quantifying uncer-
tainty for far from the source and closer to the source, we can see
that the BPFAs performance is better in all cases. However, its
performance varies depending on the region of the signal that it
operates.

STACKING OF UNCERTAINTY
MAPS

From the previous section, we have seen that
the correlation of the uncertainty maps with the
respective reconstruction errors vary at different
instances. Viewing the uncertainty map at one
time sample is useful. Nevertheless, it does not
provide the complete uncertainty because each
receiver has 500 time steps of varying correlation
levels. To get a complete understanding of uncer-
tainty for a receiver, it is useful to take into ac-
count all time samples associated with it. One
option would be to sort the uncertainty into
the x-t domain as it was done in Figure 8. How-
ever, this does not provide a quantitative metric
for the complete uncertainty. Therefore, we de-
cided to stack all 500 uncertainty maps for each
receiver together and take the average value per
receiver location.
Figure 12 shows various stacked uncertainty

maps for a section of receivers from a time slice
in the same location as the section in Figure 9
but using all 500 time samples. We can see the
BPFAs stacked variance in Figure 12a and the
respective stacked reconstruction error in

Figure 12b. The uncertainty map picks up regions of large
reconstruction error with a Spearman’s correlation coefficient equal
to 0.8306. This is higher than the individual uncertainty maps be-
cause the averaging of uncertainties helps.
The RVMs stacked predictive variance is included in Figure 12c

with the respective stacked reconstruction error in Figure 12d. We
can see that the RVMs uncertainty map is also significantly im-
proved providing higher correlation with the error and a Spearman’s
correlation coefficient equal to 0.7526. The averaging helps to am-
plify uncertainties that are correctly calculated and diminishes the
randomness in uncertainties.
To get a better understanding of the performance of the BPFAs

stacked variance and the RVMs stacked predictive variance, we re-
peat the experiment for all 20 sections of time slices (10 far from
source and 10 close to source) averaging their 500 uncertainty
maps. Table 5 shows the average Spearman’s correlation coefficient
for these 20 stacked sections. The BPFAs variance provides very
high correlation with the stacked reconstruction error showing
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Figure 12. Average uncertainty for different methods using all 500 uncertainty maps
produced per time samples for each receiver. (a) BPFAs stacked variance (0.8306),
(b) BPFAs stacked reconstruction error, (c) RVMs stacked predictive variance
(0.7526), and (d) the RVMs stacked reconstruction error. In parenthesis, the Spearman’s
correlation coefficient for each relationship as defined in equation 20.

Table 4. Mean uncertainty quantification for 4000 sections
(101–500 time samples) of close to source signals.

Spearman’s correlation coefficient between variance and
reconstruction error

Percentage used 30% 50% 70%

RVMs predictive variance 0.2904 0.3003 0.2275

BPFAs variance 0.3804 0.3632 0.3685
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the improvements obtaining with averaging. The same is true for the
RVMs predictive variance that also provides very high correlation.
Overall, the BPFAs variance still produces better uncertainty maps
compared with the RVMs predictive variance.

UNCERTAINTY MAPS FOR FIELD DATA

We will now illustrate the BPFAs performance on field data. We
will use the Parihaka data set that is a 3D seismic survey provided
by New Zealand Petroleum and Minerals (NZPM) and obtained
from the SEG wiki website (SEG, 2018b). Further information
about this data set can be found in Cohen et al. (2006). A time slice
is processed, using only 50% of receivers. Figure 13a shows an
original section from the Parihaka data set. Figure 13b shows the
same signal with 50% of the receivers used, and Figure 13c shows
the BPFAs reconstruction. Figure 13d shows the reconstruction er-
ror, and Figure 13e shows the variance of BPFAs samples. The latter
is highly correlated with the reconstruction error with a Spearman’s
correlation coefficient equal to 0.8114. Figure 13f shows the learned
basis from the available data. We can see that the BPFA learns a
dictionary of basis that captures the important features in the data,
reconstructs the signal well, and the uncertainty map is highly cor-
related with the reconstruction error. This illustrates its effectiveness
to process complex signals found in field data.

CONCLUSION

The challenge to associate each estimation
with a degree of certainty is becoming more
and more relevant with the growth of seismic
CS. Ideally, the uncertainty map produced by
an algorithm should correlate well with the
reconstruction error when we evaluate them on
a known signal. We used BPFA to obtain recon-
structions and at the same time create uncertainty
maps. This was achieved by exploiting its prob-
abilistic nature during inference, which involves
random draws. By drawing different variables
and consequently predicting different receivers’
values, it is possible to obtain a collection of pre-
dictions and then estimate a mean and a variance
for each receiver. When the variance is small,
BPFA trusts the value better and vice versa.
We compared BPFAs uncertainty maps on

thousands of sections of time slices against other
algorithms in the literature. The comparison was
done using the Spearman’s correlation coefficient
that evaluates the correlation between the uncer-
tainty map and the respective reconstruction error.
We showed that BPFA produces uncertainty maps
that are well-correlated with the error, better than
other methods. Scatter plots also illustrate this
along with visualizations of various time slices.
We used all time slices and visualized the uncer-
tainty maps for shot records and their reconstruc-
tions. Comparison with a more traditional
algorithm, namely POCS, was also provided show-
ing that the BPFA obtains higher reconstruction ac-
curacy.
We used signals with different structures dur-

ing evaluations, and we investigated how the
BPFAs performance changes with varying levels
of variance. The level of uncertainty quantifica-
tion was found not to be heavily affected by the
variance. Nevertheless, when the variance is very
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Figure 13. (a) Original, (b) using 50% of receivers, (c) the BPFAs reconstruction, (d) the
BPFAs reconstruction error, (e) the BPFAs variance with Spearman’s correlation coef-
ficient equal to 0.8114, and (f) the learned basis for a section from the Parihaka data set.

Table 5. Mean uncertainty quantification of 20 sections
stacked with 500 uncertainty maps (1–500 time samples) per
percentage.

Spearman’s correlation coefficient between variance and
reconstruction error

Percentage used 30% 50% 70%

RVMs predictive variance 0.8503 0.7164 0.6185

BPFAs variance 0.8533 0.9082 0.9168
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small or close to zero, the uncertainty also behaves badly because
BPFA is not able to learn a dictionary of basis. Therefore, care is
required when splitting the signal into sections so as to ensure that
there is enough variance. The acceptable level of signal’s variance is
subject for future research.
From this research, Bayesian estimation and analysis can help in

the construction of accurate uncertainty maps for seismic data ac-
quisition systems. BPFA is a great example of how this can be
achieved without compromising the reconstruction accuracy. This
could be useful for seismic survey design where it is often desirable
to save costs by making source/receiver spacings larger. If we can
model the degree of uncertainty that this will cost, it could have a
huge impact in making the right compromise for a certain survey.
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